
1.1 Definition:

             

 

   

 

For vectors       we define the dot product of  and  to be 

                             

                             

(Bilinearity)1.

       , and 
(Symmetry)2.

(Positive Definiteness)      with      if and only if    .3.

1.2 Theorem: (Properties of the Dot Product) For all         and all    , we have 

                  
 

 

   

     

 

1.3 Definition: For a vector     , we define the norm (or length) of  to be 

We say that  is a unit vector when      .

(Positive Definiteness)      with      if and only if    ,1.
(Scaling)             2.

     
 

                
 
 3.

(The Polarization identities)     
 

 
       

 
         

 
  

 

 
       

 
      

 
  4.

(The Cauchy-Schwarz inequality)             with             if and only if the set      is linearly 

dependent, and

5.

(The Triangle Inequality)              6.

1.4 Theorem: (Properties of Length) Let       and let    . Then

                                               

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that (4) follows immediately from (3). To 

prove part (5), suppose first that      is linearly dependent. Then one of  and  is a multiple of the other, say     

with    . 

        
 

                                 
 
 

Suppose next that      is linearly independent. Then for all    we have       and so 

      
 

         
 

  

Since the quadratic on the right is non-zero for all    , it follows that the discriminant of the quadratic must be 
negative, that is

Using part (5) note that

Thus      
 

        
 

and hence             . This proves part (5).

     
 

                
 

      
 

           
 

                 
 

          
 

And so              , which proves part (6).

1.5 Definition:

                
For points       , we define the distance between  and  to be 

1.6 Theorem: (Properties of Distance)

(Positive Definiteness)            with            if and only if    ,1.
(Symmetry)                    , and2.
(The Triangle Inequality)                               3.

Let         . Then

Proof: The proof is left as an exercise.

1.7 Definition:

For nonzero vectors         , we define the angle between  and  to be                

      
          . We say 

that  and  are orthogonal when      . As an exercise, determine (with proof) some properties of angles.

Symmetric1.
Scaling does not change the angle2.
Law of Cosine works3.
Angles add when on the same plane (Difficult)4.

1.8 Definition:

                                         
                                         
                                          
                                                          

For     and      , the sphere, the open ball, the closed ball, and the (open) punctured ball in   

centered at  of radius  are defined to be the sets 

1.9 Definition:
Let     . We say that  is bounded when         for some     and some      . As an exercise, 
verify that  is bounded if and only if         for some     
1.10 Definition:
For a set     , we say that  is open (in   ) when for every    there exists    such that         , and 
we say that  is closed (in   ) when its complement        is open in   .
1.11 Exercise:
Show that open intervals in  are open in  and closed intervals in  are closed in  .
1.12 Example:
Show that for     and      , the set       is open and the set        is closed.

Solution:
Let     and let    . We claim that       is open. We need to show that for all         there exists    
such that              . Let         and note        . (Definition of in the ball)
Let            
Let         so        

              By the Triangle Inequality
        
              
  

Then                

Since        , we have          
Thus,               

Bounded also          for some    
 for some    , we have      for all    .
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Thus,               
It follows that       is open.

Next we claim that        is closed.
We need to show that         is open (in   ).

Let           so     ,          
Since          , we have         
Let         so        
Then 

                
             

                  

         
                   

Since        
We have          
So           
Thus                

This proves that         is open 
Hence        is closed (in   

Definition:
Let     

The interior of  (in   )
Is the set 
           

        
Where  is the set of all open sets  in   with    
And the closure of  s the set 
        
Where  is the set of all closed sets  in   with    

1.13 Theorem

 and   are open in   1.

If                                                                is open2.

If           are open sets in   , then     
   is open (where     )3.

(Basic Properties of Open Sets)

Vacuously True for  and                                                             1.
Let                        2.
Let         

Let    
Since           

We can choose an index      
That     

Since           
We can choose    
So that          

Since          

And            

We have         
Thus,   is open
Let  be a finite set of open sets. If    then we use the convention that        , which is open. Suppose 

that    , says               where each   is an open set. Let           
 
    For each index  , 

since     we can choose     so that            Let                   Then for each index  , it 

follows that           
 
        . Thus     is open, as required.

3.

Proof:

Don't really need to consider the vacuous truth. Proof method does not require this.

If infinitely many sets, countably (inf) could be zero
Inf could be zero 

But it's false if not finite.

On class version:
Let           be open sets in   

The sets  and   are closed in    1.
If  is a set of closed sets then the intersection         

   is closed.2.
If  is a finite set of closed sets then the union         

   is closed.3.

1.14 Theorem: (Basic Properties of Closed Sets)

Proof: The proof is left as an exercise
Taking Complements 

    

 

   

 

 

    
 

 

   

De Morgan's Law!!!!

                              

 

 

 

                                

 

 

1.15 Definition: Let     . The interior and the closure of  (in   ) are the sets

1.16 Theorem:

The interior of  is the largest open set which is contained in  . In other words,     and   is open, and 
for every open set  with    we have      

1.

The closure of  is the smallest closed set which contains  . In other words,     and   is closed, and for 
every closed set  with    we have      

2.

Let     .

Largest / smallest exist.
Ordering
Partial ordering

For open ball       , the closure is         
For closed ball        , the interior is        

So does not exist???
No!!!!! See left

   分区MATH 247 的第 2 页    



Proof:
Note that   is open by Part (2) of Theorem 8.10, because   is equal to the union of a set of open sets. Also note 
that     because   is equal to the union of a set of subsets of  . Finally note that for any open set  with    
we have    so that          . This completes the proof of Part (1), and the proof of Part (2) is similar.

The proof is really immediate! Like a Corollary.

    
 

   and       1.

 is open if and only if     2.
 is closed if and only if      3.

1.17 Corollary: Let     

Proof: The proof is left as an exercise.

1.18 Definition:
Let     . An interior point of  is a point    such that for some    we have         . (Surrouded)

A limit point of  is a point     such that for every    we have            . The set of all limit points of 
 is denoted by   . The boundary of  , is the set of all boundary points of  .

A boundary point of  when for all    
           and            

And the set of boundary points of  is denoted by   and   is called the boundary of  .

1.19 Theorem: (Properties of Interior, Limit and Boundary Points)

  is equal to the set of all interior points of  .1.
 is closed if and only if      2.
        3.
                                   and        4.

Let      

Proof:

                        

                      

                           

                            

                             

                             

                 

       

                     

                             

We leave the proof of Parts (1) and (4) as exercises. To prove Part (2) note that when     we have          
         and so

To prove Part (3) we shall prove that     is the smallest closed set which contains  . It is clear that     

contains  . We claim that     is closed, that is        is open. Let          , that is let     with    
and     . Since     we can choose    so that           . We claim that because           it 
follows that            . 

(Point  arbitrarity close to  )
Suppose, for a contradiction, that            . Choose            . Since         and       is open, 
we can choose    so that               Since     (b is a limit point) it follows that            
Choose            Then we have                and    and so           , which contradicts the 
fact that            

Thus            , as claimed. Since           and            it follows that                
hence               . Thus proves that        is open, and hence     is closed.

It remains to show that for every closed set   with    we have       . Let  be a closed set in   with   
 . Note that since    it follows that      because if     then for all    we have           hence 
          and so     . Since  is closed we have     by Parts (2). Since      and     we have 
    . Since    and     we have       , as required. This completes the proof of Part (3).

Example!!

If                                 

         

          
          

       
     

Example!!!

When    
 

 
             

    
      
             
                

1.20 Definition:

                           .
Let     . For sets       , we say that  and  separate  when 

We say that  is connected when there do not exist open sets  and  in   which separate  . We say that  is 
disconnected when it is not connected, that is when there do exist open sets  and  in   which separate  .

1.21 Theorem

                                                        
The connected sets in  are the intervals,  that is the sets of one of the forms

For some      with    . We include the case that    in order to include the degenerate intervals   
     and       

What's the difference? Intuitive Example?
For disk, they are the same?

Two side approaches and contrapositive.

Limit points visualize?

Separate using open sets
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     and           

Sketch proof:

Supremum arguments to prove the intermediate value property

Proof:
We use the fact that the intervals in  are the sets with the intermediate value property (a set    has the 
intermediate value property when for all      and all    , if      then    ). Let    . Suppose 
that  is not an interval. Then  does not have the intermediate value property so we can choose      and   
 with      . And    . Then         and        separate  and so  is disconnected.

Suppose, conversely, that  is disconnnected. Choose open sets  and  which separate  . Choose    and    . 
Note that    since      . Suppose that 

Choose            . Note that they are not equal.

Note that    . Since       
Say    . (The case    is similar)

Let          
Note that         and  is bounded above (by b)

 has a supremum in   

(Least upper bound or completeness)

Let       

Note that since        we have             

Since    and  is open we can choose        . So that         . That is             

Hence                  

And hence             

Since    and  is open, we can choose        
So that            and since      , we have                  

Hence             

Thus we have       

If we had    
We could choose    with               (the radius is small enough) so that                   
but then             which is impossible

Similar argument shows    

If we had    . We could choose                   So that                  

But then (since      )

                         

Restriction on the possible value of supremum

If we had          we would have             
And otherwise we would have             

In either case, we have a contradiction, so    .

Since    and    
And      

It follows that     

Thus, we have      and    with       
So  does not satisfy the IVP, so  is not an interval.

___________________________________________________________________________________________________

If we had    

Note that    since we can choose    such that                and we have         
           Note that    since we can choose    such that                and then we have   
                since      .

which contradicts the fact the               because      . 

And note that          

(Show that      and    and    so        )

_______________________________________________________________________________________________

Springer

Core of the proof:
Contradiction
Supremum! Two supremum

The ball here is neither open nor closed
Considered open in P
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And note that          

(Show that      and    and    so        )

_______________________________________________________________________________________________

Open and Closed sets in     

Definition: When                    
The open ball in  centered at a radius of  is the set 
                              

Similarly, we define            
                  

When         we say that  is open in  when for all    , there exists    such that          

And we say that  is closed in  when   is open in  . (where          )

                     1.

   
 
   is open in  

If     is open in  for each    , then 2.

   
 
   is open in  

If          are open in  then 3.

Thm: (Basic Properties of Open Sets in     )

Proof. Exercise.

Theorem: (Characterization of Open and Closed Sets in     )

 is open in  if and only if      for some set     which is open in   .1.
 is closed in  if and only if      for some set     which is closed in   .2.

Let       

Suppose  is open in  . For each    . Choose     such that           , that is             1.

Let              

Note that  is open in   , because it is a union of open sets in    
Note that    (since for each                ) and    so      

Also, note that               
                    

              
     

Since           for all     

Thus we have       

Suppose conversely, that      , where     is an open set in   

Let    . Since    and        . We have    .
Since    and  is open in   . We can choose    so that         .
Then we have                       
That  is open in  .

End of Part 1. 
Part 2 left as an exercise.

Proof: 

1.32 Theorem: Let       . Define  to be connected in  when there do not exists set      which are 
open in  and which separate  . Define  to be compact in  when for every set  of open sets in  such that   
    there exists a finite subset    such that     . Then

 is connected in    is connected in   

Proof:

For the purpose of this theorem alone, we define  to be 

Suppose that  is disconnected in   . Let  and  be open sets in   which separate  .
Let      and      .
Note that  and  are open in   .
Verify that  and  separate  

Suppose conversely that  is disconnected in  . Choose open sets      which are open in  and separate  .

Choose open sets  and  in   

Such that      and      .

We have                              , but we might have      

For each    , choose     so that            (we can do this since  is open in   )

Then let             
   

Note that   is open in   (since it is a union of open sets)
And     (since each    lies in          ) 

And               
                    

             
   

And    so that       
And      (since each         )

So           

Thus       

Similarly, for each    choose     so that           

Then let             
   

And then we have      

We have           
          
And            

We claim that        

Radius 2 ball shunk so no intersect
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Suppose, for a contradiction, that        
Choose        

                  

 

   

We can choose    
Such that          

Likewise, we can choose    
So that          

Say      

Then                            

So we have             

But then    and    so        
And    
Which contradicts the fact that      

Corollary
For     

 is connected if and only if the only subsets of  . Which are both open and closed in  . Are the sets  and  

Both open and closed

Compactness
1.22 Definition:
Let     . An open cover of  is a set  of open sets in   such that       . A subcover of an open cover  of  
is a subset    such that       . We say that   is compact when every open cover of  has a finite subcover.

1.24 Theorem:
(The Nested Interval Theorem) Let           be nonempty, closed bounded intervals in  . Suppose that       
     Then    

 
      

Proof: For each    , let           with      . For each  , since        we have                  . 

Since        for all  , the sequence     is increasing. Since                for all  , the sequence 

    is bounded above by   . Since     is increasing and bounded above, it converges. Let           

         Similarly,     is decreasing and bounded below by   , and so it converges. Let           

         Fix    . For all    we have                . Since      for all  , by the 

Comparison Theorem we have    , and so the interval      is not empty. Since     is increasing with     , it 

follows (we leave the proof as an exercise) that     for all    . Similarly, we have     for all    and so 
                . Thus          

 
   , and so    

 
      

1.25 Definition:

                            

                                       

A closed rectangle in   is a set of the form

1.26 Theorem:

   

 

   

   

(Nested Rectangles) Let           be closed rectangles in   with            Then

Proof: Let                                          Since        , it follows that for each index  with 

     we have                          . By the Nested Interval Theorem, for each index  we can choose 

               
 
    Then for               we have      

 
    

1.27 Theorem: (Compactness of Rectangles) Every closed rectangle in   is compact.

Proof: Let             where           with      . Let  be the diameter of  , that is           

         
 

 
    

 

 
 

 
 

       . Let  be an open cover of  . Suppose, for a contradiction, that  does not have a finite 

subset which covers  . Let                                    and                  Recursively, we 

construct rectangles              with               where                 , and    

                      
 

 
    

 

 
 

 
 

       , such that the open cover  does not have a finite subset which covers 

any of the rectangles   . We do this recursive construction as follows. Having constructed one of the rectangles   , 

we partition each of the intervals                 into the two equal-sized subintervals       
         

 
         and 

 
         

 
             , and we thereby partition the rectangle   into   equal-sized sub-rectangles. We choose     to be 

equal one of these   sub-rectangles with the property that the open cover  does not have a finite subset which 
covers     (if each of the   sub-rectangles could be covered by a finite subset of  then the union of these   

finite subsets would be a finite subset of  which covers   ).

By the Nested Rectangles Theorem, we can choose an element      
 
    Since    and  covers  we can 

choose an open set    such that    . Since  is open, we can choose    such that         . Since     
we can choose  so that     . Since     and              we have            . Thus  does have 

a finite subset, namely    , which covers   , giving the desired contradiction.

1.28 Theorem: 
Let       . If  is closed and  is compact then  is compact.

Proof: Suppose that  is closed in   and that  is compact. Let  be an open cover of  . Let          . Since   
    we have             and so       is an open cover of  . Since  is compact, we can choose a finite 
subset         with       . Since         we also have              

    Thus, the open cover  of  
does have a finite subcover, namely         , and so  is compact, as required.

1.29 Theorem: (The Heine-Borel Theorem) Let     . Then  is compact if and only if  is closed and bounded.
Preliminary theorem: Theorem. (Closed Subsets of Compact sets are compact)
Proof: Suppose that  is compact. Suppose, for a contradiction, that  is not bounded. For each     let    

      and let             . Then        so  is an open cover of  . Let  be any finite subset of  . If    

then       and        This shows that the open cover  has no finite subcover,  , which contradicts the fact 
that  is compact.

Next suppose, for a contradiction, that  is not closed. By Part (1) of Theorem 8.16, it follows that     . Choose 

    with    . For each     let   be the open set         
 

 
  

 
             

 

 
  and let   

         . Note that               so  is an open cover of  . Let  be any finite subset of  . If    then      

 so       (since  is not closed so    ). Suppose that    , say       
    

      
 with         

  . Since    
    

      
we have        

 
       

    
 

  

 

 Since  is a limit point of  we have 

Cartesian product

Divide each interval into two equal subintervals

Zoom in to a point

Choose a r > 0
   , will contain since open

Core: Construct a rectangle to a point. And open cover
Must contain, thus a finite subcover, contradiction.
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  . Since    
    

      
we have          

 
       

      
 

  
    

 

 Since  is a limit point of  we have 

    
 

  
      hence      

 

  
        and so        

 

  
     

 

, hence       . This shows that the open cover  has 

no finite subcover  , which again contradicts the fact that  is compact.

Suppose, conversely, that  is closed and bounded. Since  is bounded we can choose    so that         . Let 
 be the closed rectangle                           

        
  

 
 
  

     
 

 

   

 

 
 
  

       

Note that         since when                   , for each index  we have

Since  is closed and    and  is compact, it follows that  is compact, by the above theorem.

Eg. Let    
 

 
        

Show  is not compact

Sketch solution:

For     , let      
 

 
  

 

       
         

 

 
   

 

       
         

 

 
  

 

       
        

Verify that for each     

 

 
         

 
And hence      

 
   

But  is not contained in the union of finitely many of the sets    

Eg. Let       
 

 
           

Show that  is compact 

Etch solution:

Let  be an open cover of  . Choose    with    
Choose    so that         

Note that       contains all the points in  except for 
 

 
   

 

 
     

 

 
  

Where 
 

   
     

For      , choose 

    so that 
 

 
    

Then               is a finite subcover of  .

Theorem. (Closed Subsets of Compact sets are compact)

Let       . If  is compact and  is closed in   , then  is compact.

Proof. Suppose  is compact and  is closed (in   )
Let  be any open cover of  , since  is closed,   is open, where          
Since  covers  ,       covers   .
Hence       covers  
Since  is compact, we can choose a finite subset  of  
Such that       covers  .
It follows that  covers  (if    then             

         

So either       or     but    so     hence       ) 
Thus,  is compact

Thm

Covers the tail?
Limit point
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2.1 Definition: Let     . We say that  is a function or map from  to   , and we write 
         , when for every    there is a unique point          . The set  is 
called the domain of the function  .

                            
The graph of the function  is the set 

We say the graph of  is defined explicitly by the equation        

                               

The null set of  is the set (kernel)

                      .

More generally, given      the level set        also called the inverse image of  
under  , is the set

                       

More generally still, given a subset     , the inverse image of  under  is the set

We say the level set       is defined implicitly by the equation       .

                                       

The range of  , also called the image of  , is the set

                   

More generally, given a set    , the image of  under  is the set

We say the range of  is defined parametrically by the equation       , and for   

              , the variables           are called the parameters.

2.2 Note: The graph, the level sets and the range of a function          are 
geometric objects such as points, curves, surfaces, or higher dimensional analogues of these. 
In accordance with the above definitions, a curve in   or in   , or a surface in   , can be 
defined explicitly, implicitly, or parametrically.

A curve in   can be defined explicitly as the graph of a function        , implicitly as 
the null set (or a level set) of a function         , or parametrically as the range of a 
function          

A curve in   can be defined explicitly as the graph of a function         , implicitly 
as the null set (or a level set) of a function          , or parametrically as the range of 
a map          

A surface in   can be defined explicitly as the graph of a function        implicitly as 
the null set (or as a level set) of a function          or parametrically as the range of 
a function          .

2.3 Example:

Consider the unit circle        in   . For             given by                  
, 

the graph of  , that is the curve       , is equal to the top half of the unit circle. For 

      given by               , the null set of  , that is the curve        , is 

equal to the entire circle. For       given by                  the range of  , that is 

the curve           , is equal to the entire circle.

2.4 Example:
Consider the ellipse which is the intersection of the cylinder        with the plane   
   in   . The ellipse is given implicitly by the two equations        and      

which can be written in vector form as the single equation                      , 

and so it is the null set of the function        given by                     

     To obtain a parametric description of the ellipse, note that to get        we can 

take       and       , and then to get      we can take            , and so 

the ellipse is given parametrically by                               In other words, 

the ellipse is the range of the function       given by                            
To obtain an explicit description for half of the ellipse, note that the top half of the circle 

       is given by               
and then to get      we need                 

, 
and so the right half of the ellipse (when the  -axis points to the right) is given explicitly by 

                   
               

 . In other words, the right half of the ellipse is the graph of 

the function              given by                   
               

  

2.8 Exercise: The helix in    is given explicitly by x = cos z and y = sin z. Sketch the curve
and find an implicit and a parametric equation for the curve.

      

                      

Geometric Objects

Parametric

                                    

Or by                             

The entire circle can be given implicitly by        

Null set of which       is given by               

Chapter 2. Introduction to Vector Valued Functions
2019年5月22日 2:26
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Parametric functions are not unique.

The helix is given parametrically by                      

And it is given implicitly by 
              

(So the helix is the null set of Null(g) where        is given by             

            

X = Cosine curve.
Y = sine curve

2.9 Exercise: The alpha curve is given implicitly by                     . Sketch the 
curve,

find explicit equations for the top and bottom halves of the curve, and 
find a parametric
equation for the entire curve.

The top and bottom halves are given by                  

Parametric Equation
Projection 

                 

       

The line from       to      is given parametrically by 

And             lies on the alpha curve when         

          

   or       

When       , we obtained the point

Sine sheet and cosine sheet intersection.
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   or       

When       , we obtained the point

                           

Parametric equation of  curve.

Thus, the alpha curve is parametrically by                         

Given      on the alpha curve, note that  is given by   
 

 
            

Find t, 
 

 
 

Origin being mapped to two points, so not bijective.

Send rational coordinates to rational coordinates
Proof alpha curve number density 

2.10 Exercise: The curve which is given explicitly in polar coordinates by r = r( ) is
given parametrically in Cartesian coordinates by (x; y) =                          
Sketch the cardioid which is given in polar coordinates by r = r( ) = 1+cos  , then find an implicit 
equation for the curve.

Polar coordinates

List a table to sketch the curve.

      

Is a circle. 

The cardioid is given parametrically in Cartesian coordinates (taking    and using   
              

                                               

We can obtain an implicit equation in Cartesian coordinates as follows 

                        as follows.

        
          

                    
  

Or as 

               
 

2.11 Exercise: The twisted cubic, X, is given parametrically by                        

Sketch the curve and find an implicit and an explicit equation for the curve.

(So it is the range of       is given by                       )

X is given explicitly by          

So  is the graph of the function       given by                   

 is given implicitly by          
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(so  is the null set of       given by                           

Sketch

Right handed

Let us verify that                 

Where               

                    

Proof:

Let                 

Choose    such that                       

Then        

       

So                           

Hence                 

Now let                

So                  

             

Let    
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Let    
Then

                                

Hence 

                

2.12 Remark: In order to sketch a surface which is defined explicitly as a graph         
or implicitly as a level set           , it often helps to first sketch curves of intersection 

of the surface with various planes    ,    or    . The intersection of the graph   
      with the plane    is given implicitly by         . The intersection of the level 

set           with the plane    is given implicitly by           .

2.13 Exercise: Sketch the curve of intersection of the cylinder        with the 
parabolic sheet     and find implicit, explicit, and parametric equations for the curve.

2.14 Exercise: Sketch the surface         

Sketch         

   

        

           

   
        
  

 
   

  

 
   
     

   
        
  

 
   

  

 
     

   ,      
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2.15 Exercise: Sketch the surface          

         

       
  

 
   
                 

    
  

 
   

  

 
     

2.16 Exercise: Sketch the surface             

Same cross section

2.17 Exercise: Sketch the surface                       

                      

Same as           
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Math Longitude

       

           
           

The sphere 
           

Is the range of        

                                          

2.18 Exercise: Find a parametric equation               for the sphere of radius  

centred at the origin, where the parameters  and  are the angles of latitude and 

longtitude. In other words, find       so that when               ,  is the angle 

between        and        and  is the angle from      counterclockwise to       

2.19 Exercise: Find implicit and parametric equations for the torus which is obtained by 
rotating the circle                      about the  -axis.

2.20 Definition: An affine space in   is a set of the form              for some 

    and some vector space     . The dimension of the affine space    is the same 
as the dimension of  . The set    is called the affine space through  parallel to  , or the 
affine space through  perpendicular to   , where   is the orthogonal complement of  , 
given by                             

2.21 Example:
In   , the only zero dimensional vector space is the origin     the 1-dimensional vector 
spaces are the lines through the origin, the 2-dimensional spaces are the planes through the 
origin, and the only 3-dimensional vector space is all of   . The 0-dimensional affine spaces 
are the points in   , the 1-dimensional affine spaces are the lines in   , the 2-dimensional 
affine spaces are the planes in   , and the only 3-dimensional affine space is all of   .

2.22 Definition:
Let        . The function  is called linear when it is of the form        for some 
matrix          , and  is called affine when it is of the form          for some 
matrix          and some vector     .

2.23 Note:

                         
 
                                    

                                                            

                                                

                             

           
 
  

              
  

  
   

  

  
     

  

  
       

 
 
  

Let       and let        be the linear map        . Let        be the column 

vectors of  and let        be the row vectors of  so that we have             

         
 
 Let  be a point in the range of  , say       . Then

               

                         

                                              

It follows that 

           
 

    
         

 
 
      

 
 
  

                                 

                                                    

2.24 Note: Let          , let     and let          . Let  be in the range of  
with say       . Then 

                                    

Note that if           are the columns of  and           are the standard basis vectors 

for   , then we have       and                 . If        are the row vectors 

of  and      , then since

It follows that the level set       is the intersection of the affine spaces        , and 
we note that the space        is the affine space in   of dimension    through  
perpendicular to   .

2.25 Exercise: Define        by                            and let 

             Find a parametric equation for the level set                

2.26 Exercise: Let    
   
   
    

 and    
 
 

  
 and let           Find an implicit 

equation for the range of  .

Sketch.
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Short test.
Level curves.

Easy tests

Half way of computation and proof
Prove theorems.

Know solution to every assignment questions.
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NOTE: The MATH 247 Term Test 1 will be held on

Monday May 27, from 12:30-1:20 pm, in MC 4063.

The test will cover Chapters 1 and 2 (omit sections 1.22-1.29)
and Assignments 1 and 2. There will be 4 questions.
you will be asked to prove 1 of the following 3 theorems:
Theorem 1.19 Part 3 (Closure and Limit Points)
Theorem 1.31 Part 1 (Open Subsets of P)
Theorem 1.32 Part 1 (Connected Subsets of P)
No calculators will be allowed.

来自 <http://www.math.uwaterloo.ca/~snew/math247-2019-S/index.html> 

1.19 Theorem: (Properties of Interior, Limit and Boundary Points)

  is equal to the set of all interior points of  .1.
 is closed if and only if      2.
        3.
                                   and        4.

Let      

To prove Part (3) we shall prove that     is the smallest closed set which contains  . It is clear that     

contains  . We claim that     is closed, that is        is open. Let          , that is let     with    
and     . Since     we can choose    so that           . We claim that because           it 
follows that            . 

(Point  arbitrarity close to  )
Suppose, for a contradiction, that            . Choose            . Since         and       is open, 
we can choose    so that               Since     (b is a limit point) it follows that            
Choose            Then we have                and    and so           , which contradicts the 
fact that            

Thus            , as claimed. Since           and            it follows that                
hence               . Thus proves that        is open, and hence     is closed.

It remains to show that for every closed set   with    we have       . Let  be a closed set in   with   
 . Note that since    it follows that      because if     then for all    we have           hence 
          and so     . Since  is closed we have     by Parts (2). Since      and     we have 
    . Since    and     we have       , as required. This completes the proof of Part (3).

1.31 Theorem:

 is open in  if and only if      for some set     which is open in   .1.
 is closed in  if and only if      for some set     which is closed in   .2.

Let       

Suppose  is open in  . For each    . Choose     such that           , that is             1.

Let              

Note that  is open in   , because it is a union of open sets in    
Note that    (since for each                ) and    so      

Also, note that               
                    

              
     

Since           for all     

Thus we have       

Suppose conversely, that      , where     is an open set in   

Let    . Since    and        . We have    .
Since    and  is open in   . We can choose    so that         .
Then we have                       
That  is open in  .

End of Part 1. 

Proof: 

1.32 Theorem: Let       . Define  to be connected in  when there do not exists set      which are 
open in  and which separate  . Define  to be compact in  when for every set  of open sets in  such that   

   there exists a finite subset    such that     . Then

We constuct     

                                                

 here acts like a bridge that get the openness in   

To  

Openness of  -> Openness of A in P. (Take the intersection)

Test 1 Preparation 
2019年5月23日 5:02
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    there exists a finite subset    such that     . Then

 is connected in    is connected in   

Proof:

For the purpose of this theorem alone, we define  to be 

Suppose that  is disconnected in   . Let  and  be open sets in   which separate  .
Let      and      .
Note that  and  are open in   .
Verify that  and  separate  

Suppose conversely that  is disconnected in  . Choose open sets      which are open in  and separate  .

Choose open sets  and  in   

Such that      and      .

We have                              , but we might have      

For each    , choose     so that            (we can do this since  is open in   )

Then let             
   

Note that   is open in   (since it is a union of open sets)
And     (since each    lies in          ) 

And               
                    

             
   

And    so that       
And      (since each         )

So           

Thus       

Similarly, for each    choose     so that           

Then let             
   

And then we have      

We have           
          
And            

We claim that        

Suppose, for a contradiction, that        
Choose        

                  

 

   

We can choose    
Such that          

Likewise, we can choose    
So that          

Say      

Then                            

So we have             

But then    and    so        
And    
Which contradicts the fact that      

__________________________________________________________________________

Topic summary:

Bilinearity•
Symmetry•
Positive Definiteness•

Dot product

Positive Definiteness•
Scaling•

     
 

                
 

•

The Polarization Identities•

Norm / length
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The Polarization Identities•
The Cauchy-Schwarz Inequality•
The Triangle Inequality•

Positive Definiteness•
Symmetry•
The Triangle Inequality•

Distance

            
   

      
           •

Angle

     •
Orthogonal

Sphere
Open ball
Closed ball
Punctured ball

        for some     and some      .
Bounded

For every    , there exists    such that         , 
Open

        is open in   .
Closed

Basic Properties of Open Sets
Basic Properties of Closed Sets

The interior of  is the largest open set which is contained in  .
Interior

The closure of  is the smallest closed set which contains  . In other words,     and   is closed, and for 
every closed set  with    we have     

Closure

    
 

   and        1.

 is open if and only if     2.
 is closed if and only if     3.

              

Interior point
                 
Limit point
           
  
Boundary point
                       
  

Separate

Connected
Disconnected

Open ball in  
Closed ball in  

Connected in  

_____________________________________________________________________________________________________

Function

Domain

Graph

Explicit

Null set

Level set
Inverse image
Implicit

Range / Image

Parametrically

Parameters

Affine space

Dimension
Orthogonal

Linear 
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Linear 
Affine
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chap3

We say that     
   

is Cauchy when

            

        

               

chap3
2019年5月29日 2:21
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converges        
   

converges for each index      

   
   

        
   

                        

And for     with               

Proof:

Let 

              

          

 

   

         

 

   

  are the standard basis vectors
By triangle inequality.
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Tail sequence
Thm 

Closedness

Keep extracting subsequences

Write elements 
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Don't have to be strict...

Vacuously 
True if 
Not a limit 
Point

Negation of the if then statement

Axiom of Choice......
Axiom — For any set X of nonempty sets, there exists a choice function f defined on X.

来自 <https://en.wikipedia.org/wiki/Axiom_of_choice> 
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Function take 
Real values

       is not needed
Don't need to be strict

like an expansion
 and  are symmetric.
So any two points

Should be able to proof... 

surround   with a disk, nothing changes
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Cool!

   when    or    and     

and 
 

 
 when    or 2 and       in  .

Note: For          and     
if     then

    
   

         
 is continuous at  

if     , then  is vacuously continuous at  .
(Isolated points?)

          

Proof (1): Suppose       for any        
Let    
Since             , we can choose     that for all    

                     

Since             , we can choose    such that for all       
      

                     

Then for any    with          we have            

             

and since        we have        so 

             

and hence, by the choice of   

                       

We proved that               

By the definition,                

E.g

           
      for all  

      
         
           

         for all  

   
   

          
   

      

Corollary: (Part 2)
If          and            and             and   
        

then (1) if  is continuous at    and  is continuous at         then 
 is continuous at a

(2) If  and  are cocntinuous, then so is  .
Corollary,
All elementary functions          are continuous.

An elementary function          is any function which can be 
obtained from the basic elementary functions.

finitely many operations

If               
      

           exists,            limit = 1

           

limit = -2

Inverse image of 
open set is open

Inverse image of 
closed set is closed

Don't matterDo matter

Is a rewording of    definition in terms of balls

Topological Space
Abstract set

Metric Space
Abstract norm

Used as a definition in more abstract space

Extreme Value Theorem

Contrapositive.

Simply take the inverse
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Extreme Value Theorem

(So     such that          for all    )

Contrapositive.

Simply take the inverse

Squeeze 
or 
Definition 

Say  is convex when for all      
the line segment        

where                       

not convex

infinite

Path-connected is stronger than connected
but usually easy to prove?

We show that is convex, hence path-connected, hence connected.

Solution:
Let           
Let                                     
For      , we have 
                                             

                     

                                                       

            
   

So we have            for all       

eg. Let                  

Show that  is open and connected.

Solution:

Let       be given by            

Then                               

 is open because  is continuous (its elementary) and       is open.

Since not convex, not easy to do a path-connected.

Given        , so      
the map 

                          

                
             

is continuous with           
and             
and for                   with       

We have                   

So that             

hence  is a continuous path from      to       in  .
Verify that 

                            

                  
          

     

subtlety
here
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is a continuous path from       to       
Also, as above, we have a continuous path from        to         
Since there is a path in  from      to       and ....
             
            

It follows from your homework that there is a path from      to      in  . 
Thus,  is path-connected, hence connected. 

  . For each of the following functions       , find                     , if it exists.                

 

     

              1.

           
      

               

Indeed, given    

Choose   
 

 
 , then for 

               

               
   

 

 
  

            
               

 
 

 
  

                  

Hence                       

  

                      2.

           
    

                       

 
          

                         
 

 
                

Note:            

Thus,               
  

                    

Indeed given     choose     
then for      with                   

We have               
   

Hence            
 

 
               

   

      

             3.

Define       

if we let           
then if                             

Then by the Limits and Composites Theorem

     
           

         
   

           
   

   

But if we define       by 
          then

     
           

          
   

           
   

 
   

        

Thus DNE
  

            4.

Define       by           
and       by           
Then if                       then 

   

and                 
 

 
 

So the limit cannot exist
   

            5.

For fixed    and      
   

          we have          
           

       
            

         

       
         

So              

      

      
  

        
 

 
  

For       given by             

and       given by            

if                       

then we must have 

     
   

         

and                 
 

 
 

Then the limit does not exist.

Sketch   
  

          and   
  

                  and   
   

          

Solution: We use polar coordinate,

                

Thus,   
  

                    
 

 
      

  
  

                       
 

 
        

Alternatively, 
Sequential Characterization

Let     
 

 
    so         

and let       
 

 
  so         

So by the Sequential Characterization of Limits
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chap4

Pretend other variables are constant

Eg  For        
     

    
        

we have 

  

  
         

        
    

            

    
         

   
                            

  

  
              

    
       

                               

chap4
2019年5月29日 2:22
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True with equal sign stuck in

Linearization
The function                     is the linearization of  at  .

Tells that when      we have           

Definition: For a function          with  open in   , and for    , we 
say that  is differentiable at    when           
              
                                   

Facts,
When  is differentiable at  , the matrix  is unique.

Indeed, the partial derivatives 
   

   
      all exists and  is the function

If the partial derivative 
   

   
      exists and are continuous at  . Thus  is 

differnetiable of  .

Special Case:
When          

and we write                            

and we have 
           
...

Tangent vector

Derivative 
______________

The dimension of the graph       at the point         is the dimension of the 

graph        (namely  ). The dimension of the level set        at the point  
is the dimension of the level set        (Namely dim Null      = nullity      ). 
The dimension of the image       at the point     is the dimension of the image 
       (namely dim Col      = rank      ). 

Special Case 2:
For          

gradient.

Derivative matrix -> affine map

Graph of affine map is affine space.

      
      

      
      

      
      

eg. For         writing         

we have          
  

  
        

  

  
        

                      
   
    

        
  

  
              

  

  
             

eg. For          

writing        
 

                      
 

we have                                
 

                            

Alternatively, by                    
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parametric / implicit representation not unique.

eg. For          

written as           
we have 

           
  

  
           

  

  
           

  

  
                      

                   
   
   
   

   

          
   
   
   

   

The tangent plane has equation 
  

  
                

  

  
                

  

  
                 

normal vector is          

eg For          

writing        
 

         

      

      

      
 

        

 

 
 
 
 

  

  
        

  

  
        

  

  
        

  

  
        

  

  
        

  

  
        

 

 
 
 
 

                  

Rows are gradient

Find the tangent line at        to the curve of intersection of          and                 

(equivalently,             )

For        

 
 
 
            

       

         

The curve is the level set 

 
 
 
            

 
 
 

We have           
 
 
 

and              

  

  
  

  

  
  

  

  
  

  

  
  

  

  
  

  

  
  

 

           
   
    

 

          
 
 
 

                   
   
   
   

   
 
 
 

That is 
                 

               

or 
         
     

Continue at chap4_new
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Rows are gradient

eg. Find a parametric equation for the tangent line at        to the curve of intersection of two 
surfaces (paraboloid)          and the cone         
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chap4_new

chap4_new
2019年6月19日 12:42
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Alternate presentation 
The paraboloid is given by          

Take the tangent space (plane) first and linear algebra

        
        

The tangent plane to the cone           
         

at the point                

(that is when            ) ...
Solve it get    

Take the normal vector. 
So it is in the direction of 

       
 
 
 
   

 
  
 

   
 
 
 
 

Thus, the tangent line (which goes through         ) is given by

 
 
 
 
   

 
 
 
    

 
 

  
 

Different version. Parameter shifted.
_____________________________________________________________
Alternate Solution / (Not recommended)

Substitute we get
          
Complete the square

       
 

 
   

 

 
 

 
  

  

 
   
    

   
 
    

 

 
   

          

The curve of intersection is given parametrically by 

  
 

   
           

   
 

 
   

 

 
      

and                 

It is the image 

                    

Find  such that             
Then calculate      

Then the equation is the tangent line is given by                     

(or by)

                       

Explanation:

For    , and              

                    

                                 

                            

                        

Verify these approximate do fall in the interval
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Verify these approximate do fall in the interval

Def. Let         be differentiable at    and let      
We define the directional derivative       of  at  with respect to  
as follows.
Choose a differentiable function (path)                with 
      and        
(for example we could choose          )

We let             

is given by              and we define 

            
By the Chain Rule

            

                   

                                          

When function only have one variable, usually use prime 
notation.

HW 4
Some book only define  to be unit vector

Thm:

Proof: 

                              

When we say that      is perpendicular to the level set        We mean that      is 
perpendicular to the tangent vector      of every differentiable curve given by 

with        

Let  be any such differentiable map
Since             for all         

We have          for all         [Near zero]

By the Chain Rule

               

for all         

               

            
             

Given any unit vector     

If we let                   be the angle between  and      

(Assuming        ).

                          

So       has maximum value        

Then, 

which is attained when       that is when    
that is when  is in the direction of      
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Examples (Given some functions       determine whether they are differentiable at a point      

(usually            ) 
eg.

For 

        
 

  

                              

                        

We saw that for                
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and  is not continuous at      

(hence as we shall prove  cannot be differentiable at      ).

Also, notice that 
  

  
              

where              
 

            

            
  

for all  

So         for all  .
  

  
                

Similarly
  

  
           

____________________________________________
eg
Let            

Then      
 

 
         

 

 
                

                
 

We claim that  is differentiable at      with              

Let     
Choose     
Let      be arbitrary.
Suppose                

that               
     

                     
   
   

                
 

 
                

               
                

Thus,                

      

             

Change it to 

       
       

              

Eg. Let             
    

 

If       was differentiable at      

then             would exist: 

For                   
    

We would have                   

But      does not exist.

(We remark that 
  

  
       and 

  

  
       both exists and are zero).

Eg.  Try         

  

                          

                   

Eg. Let         

       

                              

                      

For                 

                           

                

       

Not differentiable 

Not align with the tangent plane.
(Not smooth)

Suppose       is differentiable at      

For             
    

    
      

So        for all  

and 
  

  
               

For              
We have        

So 
  

  
               

If  was differentiable at      we could have                      
 
 
        

 
 
   

But for example, for fixed  . and let                  
For                            
So             
So we should have 
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But for example, for fixed  . and let                  
For                            
So             
So we should have 
                              

And 
                        

Since it is not true that           for all  ,  cannot be differentiable at       
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NOTE: The MATH 247 Term Test 2 will be held on

Tuesday June 18, from 4:30-5:20 in MC 4021.

It will cover Sections 1.22-1.29, Chapter 3, Sections 4.1-4.19,

and Assignments 3 and 5 (but not Assignment 4).

You will be asked to prove 1 of the following 3 theorems.

Theorem 1.29 (The Heine Borel Theorem)

Theorem 3.12 (The Bolzano Weierstrass Theorem)

Theorem 3.37 Parts 2 and 4 (The Extreme Value Theorem)

来自 <http://www.math.uwaterloo.ca/~snew/math247-2019-S/> 

Term Test 2 Preparation
2019年6月15日 9:56
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chap5

chap5
2019年6月21日 13:07
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The maximum does exist by the Extreme Value Theorem since the sphere is compact      
             is compact. (    is closed since              where       is the 

continuous function                 
) and since the function  :       given by          is 

continuous.

Elementary function.

          

 

   

        

 

   

             

 

   

       

 

   

   is the    column of  .

Also for            

                   

   分区MATH 247 的第 43 页    



 is open in   with     

 case:

Let    

Choose    with   
 

       
      

such that

                                     

                                                

                                  

            

For   , simply change      to       
And add || || matrix norm.

Theorem: (Continuous Partial Derivatives Implies Continuity)
Let          

with  open in   and    

Suppose that all the partial derivatives 
   

   
      exist at every    and are continuous at  .

Then,  is differentiable at  .
_________________________________________________________________________________________________

Remark: 
   

   
             where                              

   
   
                               

Hence 

for all  

   
   
                  

that is 

where                             

Proof:

Let    
Choose    
so that          

and so that  
   

   
       

   

   
        

 

  
   

for all          and indices    .
We want to show that,                                           

Let                       

for      with          
and note that each           
Since        is convex)

For      , let 

                             

for  between   and   

so that            

and          

For      ,      
Let                  

so that 
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For      ,      

Let                  

so that 

    
     

   

   
          

for  between       

By the Mean Value Theorem
(applied to        for  between   and   )
We can choose     between   and   so that 

             
                         

   
   
                                    

that is 

                                          

 

   

  
   
   
                     

 

   

So we have 

                        
 

  
   
   
            

        

 

   

  
   
   
             

 

   

         
 

where  is the matrix with entries      
   

   
              

   

   
      

Continue right side

Corollary: If          is   in  , which means that all the parital 

derivatives 
   

   
      exists and are continuous in  .

Then  is differentiable in   

Elementary functions are differentiable assuming open domain

           

 is continuous everywhere for all         

and  is not differentiable for all      for which        

     is continuous.    

     is differentiable when    

If         is   in the open set  .
Then  is differentiable.
The basic elementary functions are the single-variable functions,       

where   

 
 

 
  for    

              
                         
with the    inclusion 
                                 

and the    projection        
        

 
 

 
  defined for    

      defined for       

The basic open-domain elementary functions are the same functions but 
restricted to open domains, so 

         

         

                   

If          is elementary, then  is continuous (in  )
If          is an open-domain elementary function (obtained by 
applying operations of functions to the basic open-domain elementary 
functions)
Then  is differentiable,   (actually   ) in its domain, hence differentiable 
in   

eg. For            ,  is continuous at every         because        

           
 

Also,  is   hence differentiable in                   

because  is open-domain elementary in  , indeed.
If         ,         

       

          for    

then              

We also saw that            is differentiable at      

Note: That when    ,  is not differentiable at       
Because for            we have                  which is not 

differentiable at    so 
  

  
       does not exist

Similarly, 
  

  
       does not exist so  is not differentiable at      when   

  

We plan to show that when          is   in  , which means that all 
second order partial derivatives 

    
      
           

 

   
    

   
   
       

exists and are continuous at every    , then 

make this        

make this        

Triangle Inequality
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exists and are continuous at every    , then 

    
      
           

 

   
    

   
   
       

for all    

We first prove a lemma 
Lemma (Iterated Limits)

Let    and    be open intervals in  with    and    
Let                 
and let         
Suppose that                         

and suppose that for every        
   
   

             

Then                     

eg For        
  

          

   
   

        
          
          

and 

   
   

        
           
           

So                      

But                     
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chap6

Maybe          
For      with      ,      we have                     
for all  .

Let                                           

By the MVT, applied to the function                      using the 

variable  (with  fixed), we can choose  between  and  

  
  

   
               

  

   
           

                                        

       

such that 

 
   

      
                   

  

   
               

  

   
          

By the MVT applied to the function 
  

   
              as a function of 

  (with  fixed), we can choose  between  and  such that 

So we have    
   

      
                        

                     

Apply the MVT again, to the function 

Using the variable  , we can choose  between  and  such that 

  
  

   
                               

   
   

      
                  

For                

  
   
               

  
   
          

 
                                

   

      
                  

Since 
   

      
        is continuous at  and since                 We have 

   
           

   

      
                   

   

      
          

Since 
  

   
      is continuous everywhere (hence at  and at      )

We have       

  

   
                

  

   
           

 
                     

By the above lemma, equal to 
   

      
        

chap6
2019年7月2日 12:35
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What this looks like at two variables.

 is   

                     
 

  
           

              
                         
(The linearization of  at  )

and 

                          
 

  
                  

      

 

 
 

   

      
          

   

      
           

   

      
          

   

         
            

 

 
 

where

That is            

with          
   

      
        

This matrix is called the Hessian matrix of  at  .

Ex1. Define local maximum and minimum values for         

Ex2. Show that if              
Then  does not have max or mim at  .

Global maximum at  when          for all     

Proof:       
    
   
    

 Let 
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When        is symmetric (meaning that     )
all the eigenvalues of  are real.  is orthogonally diagonalizable so there exists an orthogonal 
matrix               (so      ) (ie       )
such that                     

where        are the eigenvalues of  .

 is positive-definite
       for all       

 all the eigenvalues of  are positive

 is positive-semidefinite
       for all     

 all the eigenvalues of  are non-negative
 is negative-definite  ...

 is indefinite 
         such that       and       
  has at least one positive eigenvalue and at least one negative eigenvalue

           

                

For linear maps
       

Similar matrix

For symmetric bilinear form (and quadratic forms)
      
(where  is invertible)

Congruent

follows by Taylor's Theorem

Choose    so         and      is positive definite at every         

eg.  For        
 

            defined when         . Find              

Solution:

  

  
     

 

        
             

  

  
     

  

        
             

   

   
     

 

        
              

   

    
      

   

    
      

   

        
             

   

   
      

So         
  

  
           

  

  
          

   

   
          

   

    
           

   

    
            

   

   
           

Hence

                  
 

  
                     

     
 

 
       

Eg.
Find and classify the critical points of                   

Solution:
Critical point : Definition __

Classify: determine whether max or min or saddle point

                        

    
       

     
 

We have 
                       and      

                           

                                     

                      

Thus,  has critical points at      and        
We have 

         
  
    

                
     
      

 

Fails the test                             

(or for         )
for some    .
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For    
     
      

 

        
            

Since        , the eigenvalues of  are non-zero. Since  neither positive definite nor negative 
definite.  must hae one positive eigenvalue and one negative eigenvalue.
Alternatively, 

         
  
  

 

          
     
     

         

So the eigenvalues are   
      

    

 
      

So  , hence  , has one positive and one negative eigenvalue.

Thus,  has a saddle point at       
The second Derivative Test gives no information about the point      
We have

                  

So for           

and             we have

                

So     has a local max at     
and for           and             we have               

Thus, neither. Saddle point at      

eg. Find the absolute max and min values of                  on the compact set 

           

Solution:

                 

          
   

 

                  and    

     and    
             and    )
            or       

We have                     

Let us classify the critical points (for fun)

         
  
   

        
  
   

 

          
   

     
        

The eigenvalues of  are   
       

    

 
       

So  , hence also        havs one positive and one negative eigenvalue.

So  has a saddle point at      

            
    
   

    

where    
   
   

 

                    

So  , hence also             is negative definite. So  has a local max at             with 

            

We need to consider                                

                 

Let                   

                                      

and consider 

We need to find the max and min values of     for       
Note that                                                             
      
                        

                      

where     
      

                          
                            

        
    

      
        

we give up

Verify that     is                        for all  .
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chap7

  
    

   for all    ,

Ex. Let  be the triangle with vertices       ,       ,      

Find     
 

 
  

Integral designed to measure area or volume.

chap7
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7.4 Solution1: 

Note that 

D =                         

So   
 

 
      

    

     
  

 

   
  

       
     

    
 

   

  

                  
 

   

  

         
 

   

  

  
 

 
     

 

 
     

   

 

    
  

 
    

  

 
   

Solution 2:

We have 

       where                  
   

 
          

                
   

           

So we have 

  
 

 

   
 

  

   
 

  

      
   

  
   

    

  
 

    

         
 

  
   

    

   
 

   

   

       
  

   
 

   

   
 

    

         
  

     
 

    

 
 

   

  

  
 

 
       

 
 

 

    

       
 

 
       

 
 

 

   

  

  

7.5 Solution:

Usually smooth bijective map
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Points on the curve of intersection satisfies           
          
           

The intersection 
It lies above the circle  

The given solid  is the set
                                  

                               
                 

            

The volume is 

    
 

 

       
  

       
  

            

               
  

 

   

  

             
            

               
  

 

   

  

            
 

 
     

               

            
 

   

  

  
 

 
         

 
 
  

 
 

 
         

 
 
  

 

   

  

  
 

 
         

 
 
  

 

   

  

  
 

 
            

 
 
  

 

   

  

Let      
     

  
 

 
        

 
 
  

 

    

  

  
 

 
             

 
 
  

   
 
   

  

  
 

 
         

 
 
  

   

               

  
 

 
   

       

 
          

  
 
  

   

  

 
 

 
                    

 
 
  

   

  

 
 

 
   

 

 
     

 

 
   

 
 

 
  

7.6 Exercise

Note that the given tetrahedron is the set                              

So the mass is 

             
 

   

  
 

   

  
 

   

  

Top view
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Note that the given tetrahedron is the set                              

So the mass is 

             
 

   

  
 

   

  
 

   

  

              
   

 
 

   

  
 

   

  

           
 

   

  
 

   

  

        
 

 
      

   

  

   

  

      
 

 
    

 

   

  

  
 

 
     

 

  
      

   

 

 
  

 
    

  

  
    

   

  
   

   

Change of variables

Top view

Examples:

Note : if  is connected. then either        for all    or        for all     

(because for              ,          is continuous and     is connected.
It follows that            or           

parallelogram 
Trapezoid

When           for all    , we say that  preserves orientation and when           for 
all    , we say that  reverses orientation.

Examples:

When the polar coordinates map            where                  

   分区MATH 247 的第 55 页    



When the polar coordinates map              where                       

and                         is given by                           

The polar coordinates change of variables map is given by                           

We have     
          
         

 

and                        
for all         

So the polar coordinates map is orientation preserving.

The cylindrical coordinates map is given by 

                                

    
           
          

    
 

So that        

The spherical coordinates map 

                                            

???

Exercise: Find          

and             and simplify.

    

                           
                          

            
 

     

                                                                     

                               

       

Thm (Change of coordinates)

  
 

 

       
 

 

       

When       are open,          and      is a change of coordinates map and     
    is continuous, we have 

For       ,            
Writing                 

we have 

         
 

 

                                   
 

 

        

For                     
                    
           
      and              

We have 

     
 

 

           
 

 

            

     
 

 

                  
 

 

                
    

      

  

That is 

Why take off the absolute value sign?
(when        for all  ,       and       ) 

Eg. Example 7.10

Find the area inside the cardioid          

Solution

(The fact that    when    implies in the image curve as  approaches  , the corresponding 
point in the      plane approaches the origin    in the direction of the ray    .
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point in the      plane approaches the origin    in the direction of the ray    .

The area is     
 

 
        

 

 
                    

 

 
         

       

   
  

  

   
   

  
 

 
    

   

         

   
                  

  

   
  

        
   

Exercise 7.12

Find the volume of the region inside the sphere           and inside the cylinder       
    

                                   

Solution:

Solution 1:

    
 

 

      
                

   

  
            

   

  
 

   

  

Solution 2:

          

                        

   (not needed) or        
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Use cylindrical coordinates
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Find the mass of the ball           where the density is given by

           
 

 
                      

Solution:

For                       and  , the spherical coordinates map,                  

                           

We have       where

                            

The mass is 

      
 

 
                       

 
 

 

        

     
 

 
                  

 

 

        

       
 

 
          

  

   

  
 

   

  
 

   

  

                
 

   

  
 

   

  

          
 

   

  

    
 

 
     

 

 
     

 

 

    
  

 
    

  

 
    

 
  

 
   

eg. Find the volume of the region under the graph of            
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We are finding the volume of                                        

                          

For the polar coordinates map  given 

We have       

Where                               
  

  
 

 

             
 

 

         

The volume is 

First one 

    
 

        

   

  
 

    

  
 

    

  

On the other hand, 

  
 

 

        

     
    

   

   
  

   

  
 

   

  

         
 

   

  

     
 

 
      

 
   

 

      
 

 
     

It follows that 

       
 

 

   

 

  

SO 
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Arc Length

                       

       linear density at      
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Thm (The Inverse Function Theorem)

Let          and let    
Suppose that  is   and      is invertible
The  is locally invertible and its (local) inverse is   

If      , then          

               

                

eg. Let                

Find the image, under  , of the rectangle with vertices                          

Solution:

              
              
             
            

Locally invertible most of the time, but not anytime.

The image is merely a boundary

We have 
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Corollary (Parametric function Theorem)

Corollary (Implicit Function Theorem)

Let            with    with        

Suppose  is   in  and      has rank  .
Then, 

Suppose  is   in  and      has rank  . Then the level set       is locally equal to the graph of a   function.

  is a        matrix. Since      has rank  . It follows that some    submatrix of      is invertible.

Reorder the variables in     so that the last  columns are independent.

Write                        and         

Then     
  

  
  

  

  
   

where 
  

   
    

 

 

   

   
    

   

   
   

   

  
   

   
   

 

 

and 
  

  
     is invertible.

Define              

by                        

Then     
  
  

  
  

  

  
   

so      is invertible.

By the inverse function theorem,  is locally invertible.

                       

Let  be the inverse map, and write 

Then verify that the level set                        is the same of the graph of the function                          

eg. Sketch              
Solution:

                

   
                

               
 

 
                     

                    

Solution: 
             

       
   

   
  

 
     

diagonalize    
   

   
 

A is positive definite

                  
        

  
      

    
 

 
         

Solution:

Let                  

(we are sketching        )

                 

For              
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Inverse function theorem

Differential geometry

Lagrange Multipliers

To define the  -volume of a bounded set     

Choose a rectangular box which contains  . 
Say                            

Partition each interval        to get a partition  of  into subrectangles            

We define upper and lower volume estimates

       

 

   

       

 

   

where 

where                     or      

                       or        

We define the outer and inner volumes of  in  to be 

                                                

                                                      

Verify that the two Vols do not depend on  .

Write                for any rectangle  with    .
and                        for any  

     is called the outer Jordan content.

     is the inner Jordan content of  

We say  has a well-defined area or well-defined Jordan content
when            

Why not just upper limit?
Break some properties.
Volumes/Areas not properly added up

Fact
If  and  are bounded and have well-defined volume, then                    

Fact
A bounded set     has a well-defined Jordan content          

When     a rectangle,                  
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NOTE: The MATH 247 Term Test 4 will be held on

Monday July 29, from 12:30-1:20 in MC 4063.

It will cover Chapter 6 and Sections 7.1-7.13, and Assignment 6.

You will be asked to prove 1 of the following 3 theorems.
Lemma 6.1 (Iterated Limits)
Theorem 6.8 (Taylor's Theorem)
Theorem 6.17 (The Second Derivative Test)

来自 <http://www.math.uwaterloo.ca/~snew/math247-2019-S/> 

Term Test 4 Preparation 
2019年7月27日 4:44

   分区MATH 247 的第 66 页    

http://www.math.uwaterloo.ca/~snew/math247-2019-S/

