Chapter 1. Topological Properties of Sets in Euclidean Space
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1.1 Definition:
For vectors x,y € R™ we define the dot product of x and y to be
n

x<y=yTx=Zx[y,'.
i=1
1.2 Theorem: (Properties of the Dot Product) For all x,y,z € R® and all t € R, we have

1. (Bilinearity)
(x+y)-z=x'z+y~z,(tx)<y=t(x'y)
x<(y+z)=x'y+x-z,x<(ty) =t(x-y)

2. (Symmetry)
x-y=y-x,and

3. (Positive Definiteness) x - x = 0 with x - x = 0 ifand only if x = 0.

1.3 Definition: For a vector x € R", we define the norm (or length) of x to be

We say that x is a unit vector when |x| = 1.

1.4 Theorem: (Properties of Length) Let x,y € R™ and let t € R. Then
. (Positive Definiteness) |x| = 0 with |x| = 0 ifand only if x = 0,
. (Scaling) |tx| = [t]]x],
2 2
[x+y]" = a2 £ 2(x - y) + |y]".
. (The Polarization identities) x - y = %(|x + y|2 —|x|2 = |y|z) = %(|x + y|2 - |x - y|2),
. (The Cauchy-Schwarz inequality) |x - ¥| < |x||y| with |x - y| = |x||y| if and only if the set {x, y} is linearly
dependent, and
6. (The Triangle Inequality) |x + y| <|x|+ |y|

[ B S

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that (4) follows immediately from (3). To
prove part (5), suppose first that {x, y} is linearly dependent. Then one of x and y is a multiple of the other, say y = tx
witht € R.

[x-y| = lx- @] = leCx- )| = [ellx]* = |x|lex] = |x]y]-
Suppose next that {x. y} is linearly independent. Then for all t € R we have x + ty # 0 and so

0% [x+ty* = (x + ty) - (x + &) = xI2 + 2e(x - y) + 2|y
Since the quadratic on the right is non-zero for all t € R, it follows that the discriminant of the quadratic must be
negative, that is

2 2

4(x-y) —4lx?ly] <0
Thus (x - y)? < Ix|2|y|* and hence |x - y| < |x|y|. This proves part (5).

Using part (5) note that

2 2 2 2 2 2

[x+y]" = 1xl2+2(x-y) +|y|" < |x +y|" + 2]y + [y]” < Ix12+ 21xl|y] + |y|" = (x| + |y])
And so |x + y| < |x| + |y|, which proves part (6).

1.5 Definition:
For points a, b € R", we define the distance between a and b to be
dist(a, b) = |b — al.
1.6 Theorem: (Properties of Distance)
Leta, b, c € R™. Then
1. (Positive Definiteness) dist(a, b) = 0 with dist(a, b) = 0 ifand only ifa = b,
2. (Symmetry) dist(a, b) = dist(b, a), and
3. (The Triangle Inequality) dist(a, c) < dist(a, b) + dist(b, c).
Proof: The proof is left as an exercise.

1.7 Definition:

For nonzero vectors 0 # u, v € R, we define the angle between u and v to be 6(u, v) = cos™! MY

il € [0, 1t]. We say

that u and v are orthogonal when u - v = 0. As an exercise, determine (with proof) some properties of angles.

. Symmetric

. Scaling does not change the angle

. Law of Cosine works

. Angles add when on the same plane (Difficult)

B WN R

1.8 Definition:
Fora € R"and 0 < r € R, the sphere, the open ball, the closed ball, and the (open) punctured ball in R™
centered at a of radius r are defined to be the sets

S(a,r) = {x € R*|dist(x,a) =1} = {x e R*||la — x| =71},

B(a,r) = {x € R"|dist(x,a) <1} ={x € R*||la — x| <1},

B(a,r) = {x € R*|dist(x,a) <1} = {x e R*||a—x| <7},

B*(a,r) = {x € R"|0 < dist(x,a) <1} ={x e R"|0 < |a — x| <1} = B(a,r) \ {a}

1.9 Definition:

Let A € R". We say that A is bounded when A € B(a,r) for some a € R" and some 0 < r € R. As an exercise,
verify that 4 is bounded if and only if A € B(0, ) for some r > 0.

1.10 Definition:

Foraset A € R™, we say that A is open (in R™) when for every a € A there exists r > 0 such that B(a,r) € 4, and
we say that A4 is closed (in R™) when its complement A° = R™\A is open in R™.

1.11 Exercise:

Show that open intervals in R are open in R and closed intervals in R are closed in R.

1.12 Example:

Show that for a € R™ and 0 < r € R, the set B(a, ) is open and the set B(a,r) is closed.

Solution:
Leta € R™ and letr > 0. We claim that B(a, ) is open. We need to show that for all b € B(a,r) there exists s > 0
such that B(b,s) € B(a,r).Let b € B(a,r) and note |b — a| < r. (Definition of in the ball)
Lets=7r—|b—al >0
Letx € B(b,s)so|x—b|<s
Then|x —al=|x—-b+b—a|
< |x = b| + |b — a| By the Triangle Inequality

<s+|b+al
=r—|b—al+|b—al
=r

Since |x — a| < r, we have x € B(a,r).
N PP
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Bounded also A € B(0,7) for somer > 0
© for somer > 0, we have |a| < rforalla € A.




Thus, B(b,s) € B(a,r).
It follows that B(a,r) is open.

Next we claim that B(a,r) is closed.
We need to show that B(a, 7)€ is open (in R™).

Leth € B(a,7)°sob € R", b ¢ B(a,r)
Since b ¢ B(a,r), we have |b —a| > .
Letx € B(b,s)sox —b| <s.

Then

la=bl=la—x+x—b|
<la—x|+|x—b|

la—x|=|a—b|—|x—b|
>la—b|l—s
=la=bl=-(b—a|l-7)=r

Since |[x —a| > r

We have x ¢ B(a,1)
Sox € B(a,1).

Thus B(b,s) € B(a,r)¢

This proves that B(a,7)¢ is open
Hence B(a,1)is closed (in R

Definition:

LetA € R"

The interior of A (in R")
Is the set

Ar=taeAtr>0

A% =Uyeg U

Where S is the set of all open sets U in R" with U € A
And the closure of As the set

A=Nyer K

Where T is the set of all closed sets K in R"with A € K

1.13 Theorem

(Basic Properties of Open Sets)
1. @ and R" are open in R"
2. If Uy is an open set for each k € K (where K is any set) then Upegk Uy is open
3. IfU;, Uy, ..., U, are open sets in R", then N}_, U, is open (where [ € Z*)

Proof:

1. Vacuously True for @ and R" is open because B(a,r) = {x € R"||x —a| <7} S R"foralla € R",r > 0

2. Let Uy, be open for each k € K
Let U =Uyeg Uy
Leta €U
Since a € U =Upek Uy
We can choose an index k so
Thata € Uy
Since Uy is open
We can chooser > 0
Sothat B(a,r) € Uy
Since B(a,r) € Uy
And Uy € UjeiUj = U
We have B(a,7) € U
Thus, U is open

3. Let S be a finite set of open sets. If § = @ then we use the convention that N § = R™, which is open. Suppose
thatS # @,says S = {Ul, Uy, ..., Um} where each Uy is an open set. Let a € NS = N}, Uy, . For each index k,
since a € Uy we can chooser, > 0 so thatB(a, rk) C Uy.Letr = min{rl,rz, ...,rm}. Then for each index k, it
follows that B(a,7) € Nj, Uy = N S. Thus N S is open, as required.

Don't really need to consider the vacuous truth. Proof method does not require this.

If infinitely many sets, countably (inf) could be zero
Inf could be zero

But it's false if not finite.

On class version:
Let Uy, Us, ..., U, be open sets in R™

1.14 Theorem: (Basic Properties of Closed Sets)
1. The sets @ and R™ are closed in R™.
2. IfSisasetof closed sets then the intersection N S = Nges K is closed.
3. IfSis afinite set of closed sets then the union U S = Ugeg K is closed.
Proof: The proofis left as an exercise

Taking Complements
c
Jj€J j€J

De Morgan's Law!!!!

1.15 Definition: Let A € R™. The interior and the closure of A (in R™) are the sets

= U{u CR|Uisopen,and U € 4},

A= ﬂ{K € R"| K is closed and A4 € K}.

1.16 Theorem:
LetA € R™.
1. The interior of A is the largest open set which is contained in A. In other words, A° € A and A° is open, and
for every open set U with U S A we have U < A°.
2. The closure of 4 is the smallest closed set which contains 4. In other words, 4 € A and 4 is closed, and for
every closed set K with A € K we have A C K.
Largest / smallest exist.
Ordering
Partial ordering
So does not exist???
For open ball B(a, r), the closure is B(a, ). No!lll! See left
For closed ball B(a,7), the interior is B(a, 7).
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Proof:

Note that A° is open by Part (2) of Theorem 8.10, because A° is equal to the union of a set of open sets. Also note
that A’ € A because A° is equal to the union of a set of subsets of A. Finally note that for any open set U with U € A
we have U € S sothat U € U S = A°. This completes the proof of Part (1), and the proof of Part (2) is similar.

The proof is really immediate! Like a Corollary.

1.17 Corollary: Let A € R"
1. (4°)°=4andd =4
2. Aisopenifand onlyif 4 = A°
3. Aisclosedifand only if A = A.
Proof: The proof is left as an exercise.

1.18 Definition:
Let A © R™. An interior point of A is a point a € A such that for some r > 0 we have B(a,r) S A. (Surrouded)

Alimit point of A is a point a € R" such that for every r > 0 we have B*(a,7) N A # @. The set of all limit points of

A is denoted by A'. The boundary of 4, is the set of all boundary points of A. Wh
For disk, they are the same?

Aboundary point of A when forallr > 0

B(a,r)NA # @,and B(a,7) N A° # @

And the set of boundary points of 4 is denoted by 04 and 04 is called the boundary of A.

1.19 Theorem: (Properties of Interior, Limit and Boundary Points)
LetA € R™

1. A% is equal to the set of all interior points of A.

2. Aisclosedifand onlyif A’ € A.

3. A=AUA.

4. 9A = A\ A orequivalently A= A°UdA andA°NdA =@

Proof: Two side approaches and contrapositive.

We leave the proof of Parts (1) and (4) as exercises. To prove Part (2) note that when a ¢ A we have B(a,r) N A =
B*(a,7) N Aand so
Ais closed < A°is open
& VaeA®Ir > 0B(a,r) € A°
o VaeRY (ag¢ A=>3r>0B(ar) S A°)
= VaeR"(ag¢ A= 3r>0B(ar)NA=0)
e VaeR (ag¢A=>3r>0B*(a,r)NA=0)
S VaeR"(Vr>0B*(a,r)NA+0=>a€Ai)
SVaeRY (a€A >a€A)
= A CA

ACAeoVaeR (aeA >acl)
S VaeR (Vr>0B*(a,r)NA+D=>a€A)
To prove Part (3) we shall prove that A U A’ is the smallest closed set which contains A. Itis clear that A U A’
contains A. We claim that A U 4’ is closed, thatis (AU A")¢ is open. Let a € (A U A")¢, thatisleta € R" witha & 4
anda ¢ A'. Since a ¢ A’ we can choose r > 0 so that B(a,7) N A = @. We claim that because B(a,7) N A = @ it
follows that B(a,r) N A" =

(Point b arbitrarity close to a)

Suppose, for a contradiction, that B(a,r) N A’ # @. Choose b € B(a,1) N A". Since b € B(a,r) and B(a,) is open,
we can choose s > 0 so that B(b,s) € B(a,r). Since b € A’ (b is a limit point) it follows that B(b,s) N A # @.
Choose x € B(b,s) N A. Then we have x € B(b,s) € B(a,r) and x € A and so x € B(a,r) N A, which contradicts the
factthat B(a,r) N A = @.

Thus B(a,r) N A’ = @, as claimed. Since B(a,r) N A = @ and B(a,r) N A’ = @ it follows that B(a,7) N (AU A') = @
hence B(a,7) € (AU A")¢. Thus proves that (A U A")€ is open, and hence A U A’ is closed.

It remains to show that for every closed set K with A € K we have A U A’ € K. Let K be a closed setin R™ with 4 <
K. Note that since A € K it follows that A’ € K’ because if a € A’ then for all 7 > 0 wg have B(a,r) N A # @ hence
B(a,r) N K # @ and so a € K'. Since K is closed we have K’ € K by Parts (2). Since 4’ € K’ and K’ € K we have
A" € K.SinceA € Kand A’ € K we have AU A’ € K, as required. This complete; f of Part (3).

Example!!

IfA=B(0,1) U{(cost,sint)|0 <t <n}c R?

A° = B(0,1) n, o
A= B(0,1)

A = A\ A°

=5(0,1)

A=A

Example!!!

(1 + v
Whend ={2| nezt}cr Lo 2 e xS

)
[4
A =0 o
A=AUA =AU{0}
0A=A\A" =AU {0} wm
Ve |

» /.,-——v

4 !y \

\@/’ @ ,
/@ /
</

Separate using open sets

1.20 Definition:

Let A € R™ Forsets U,V S R", we say that U and V separate A when
UnA#@VNnA#@gUnV=0andACUUV.

We say that 4 is connected when there do not exist open sets U and V in R" which separate A. We say that 4 is

disconnected when it is not connected, that is when there do exist open sets U and V in R" which separate A.

1.21 Theorem
The connected sets in R are the intervals, that is the sets of one of the forms
(a,b),[a,b), (a,b], [a, b], (a, ), [a, ), (=0, b), (=0, b], (—00, ©0)
For some a, b € R with a < b. We include the case that a = b in order to include the degenerate intervals @ =
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What's the difference? Intuitive Example?

Limit points visualize?



(a,a) and {a} = [a,al.
Sketch proof:

Supremum arguments to prove the intermediate value property

N <TL Tu{mle

Proof: \
We use the fact that the intervals in R are the sets with the intermediate value property (a set A S R has the I
intermediate value property when foralla,b € Aandall x € R,ifa < x < bthenx € A). Let A S R. Suppose

that A is not an interval. Then A does not have the intermediate value property so we can choose a,b € Aand u €

Rwitha < x < b.And x ¢ A. Then U = (—o0,x) and V = (x, ») separate 4 and so 4 is disconnected.

Suppose, conversely, that 4 is disconnnected. Choose open sets U and V which separate A. Choosea € Uand b € V.

Note that a # b since U NV = @. Suppose that

Choose a € UN A,b € V n A. Note that they are not equal. “ w V‘

Notethata # b.SinceU NV = @.

Say a < b. (The case b < a is similar) \

LetS =UnN[a,b]
Note that S # @ (a € S) and S is bounded above (by b)

S has a supremum in R.

~
(Least upper bound or completeness) S \ S
Letx =sup S

Note that since S € [a, b] we have x = sup S € [a, b]
Since A € U and U is open we can choose 0 < r < b — a. So that B(a,r) € U. Thatis (a—r,a+1) S U. V\/\'e V\—w
Hence [a,a+1) S UNJ[a,b]l=S$ r\j

Andhencex =supS=a+r>a

Since b € V and V is open, we can choose 0 <r < b —a

~
Sothat (b—r,b+1) S VandsinceUNV =@, wehaveS =Un[a,b] S [a,b—T] d
Hencex =supS<b—-r<b /\ U \

Thus we have a < x < b.

Ifwehadx € U
We could choose r > 0 with 7 < min(x — a, b — x) (the radius is small enough) so that (x —r,x +r) S U N [a, b]

but then x = sup § = x + r > x which is impossible
Similar argument shows x & V
If we had x € V. We could choose 0 < r < min(x — a, b — x).. So that (x — r, x + 152 Pfifg pspof:
Contradiction
*

But then (since U NV = @) Supremum! Two supremum
S=Unl[abl S lax-7r]U[x+7,b] O\)‘_O& A() M ‘\W (\

Restriction on the possible value of supremum

If wehad S € [a,x —r] we would have x =supS <x—r<r N
And otherwise we would have x = supS > x +r > x

In either case, we have a contradiction,so x & V. % \
Sincex € Uandx ¢ V

AndAcUUV

It follows that x & A.
Springer

Thus, we have a,b € Aand x ¢ Awitha <x < b,
So A does not satisfy the IVP, so A is not an interval.

Ifwehadx =a

Note that u # a since we can choose § > 0 such that [a,a + §) € U N [a, b] and we have u = sup(U n
[a,b]) = a + 8. Note that u # b since we can choose § > 0 such that (b — §,b] € V N [a, b] and then we have u =
sup(Un[a,b]) <b—8sinceUNV =@.

which contradicts the fact the u = sup(U N [a, b]) because U NV = @. The ball here is neither open nor closed
Considered open in P

And note that x € [a, b].

(Showthata <x <bandx ¢ Uandx ¢ Vsox @ ASUUYV)
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(Showthata <x <bandx ¢ Uandx ¢ Vsox @ ASUUYV)

Open and Closed sets in P € R™

Definition: When P S R",a € Pand 0 <r € R,
The open ball in P centered at a radius of r is the set
Bp(a,r) ={x €EP||lx—a| <r}=B(a,r)NP

Similarly, we define B, (a, 1), Bj(a,),and Sp(a, 1)

When A € P € R™, we say that 4 is open in P when for all a € 4, there exists r > 0 such that Bp(a,7) € A

And we say that 4 is closed in P when A€ is open in P. (where A° = P \ A)

Thm: (Basic Properties of Open Sets in P € R™)
1. @and P are open in P
2. IfE), € PisopeninP foreach k € K, then
Ugex Ex is openin P
3. IfE,,..,E, S P are openin P then
N§—,Ey is openin P
Proof. Exercise.

Theorem: (Characterization of Open and Closed Sets in P € R")

LetACPCSR™
1. Aisopenin P ifand onlyif A = U n P for some set U S R™ which is open in R™.
2. Aisclosedin P ifand only if A = K N P for some set K S R™ which is closed in R™.

Proof:
1. Suppose A isopenin P.For each a € A. Choose 1, > 0 such that Bp (a, ra) <€ A, thatis B(a, ra) np°PcA
Let U =Ugey B(a,7,)
Note that U is open in R"™, because it is a union of open sets in R™.
Note that A € U (since foreacha € 4,a € B(a,rA) cU)andASPsoASUNP
Also, note that U N P = (Uaeq B(@,72)) NP = Ugea(B(a,7) N P) = Ugea Bp(ary) €A
Since Bp(a,7,) S Aforalla € A.

Thuswe have A =UNP.

Suppose conversely, that A = U N P, where U € R" is an open setin R™

Leta € A.Sinceca € Aanda=UnNP € U.Wehavea € U.

Since a € U and U is open in R™. We can choose r > 0 so that B(a,r) S U. \/
Then we have Bp(a,7) = B(a,r)NPSUNP =4

That 4 is open in P.
End of Part 1.
Part 2 left as an exercise.
1.32 Theorem: Let A € P € R™. Define A to be connected in P when there do not exists set E, F € P which are
open in P and which separate A. Define A to be compact in P when for every set S of open sets in P such that A
U S there exists a finite subset T € S such that A © UT. Then
Ais connected in P < A is connected in R™
Proof:
For the purpose of this theorem alone, we define A to be
Suppose that A is disconnected in R™. Let U and V be open sets in R" which separate A.
LetE=UNPandF=VnNP.
Note that £ and F are open in R".
Verify that E and F separate A

Suppose conversely that A is disconnected in P. Choose open sets E, F S P which are open in P and separate A.

Choose open sets U and V in R™®

Suchthat E=UnPandF=VNP. (B/
Wehave UNA2ENA#QVNA2FNA+®,ASEUF € UUV,butwe mighthaveUNV # @

For each a € U, chooser, > 0 so that Bp (a, 2ra) C U (we can do this since U is open in R™)

Thenlet U, = U,er B(a,1,)
Note that U, is open in R™ (since it is a union of open sets) Radius 2 ball shunk so no intersect
And E € U, (since each a € E lies in B(a, ru) cU)

And Uy N P = (Uges B(@,1)) NP = Ugeg(B(a,75) N P) = Ugeg Br(a@,7)

AndE € PsothatE € UynP
And U, < U (since each B(a,7) € U)

SoUynPcUNnP=E

ThusE = Uy N P

Similarly, for each b € V choose s, > 0 so thatB(b, 25,,) cv
Thenlet Vo = Uyer B(b, sp)

And thenwe have VNP =F

Wehave ENAC U, NA+#0

@+FNACSV,NA

AndACSEUFCU,uV,

We claimthat Uy NV, = @
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Suppose, for a contradiction, that Uy NV, # @
Choose c € Uy NV,

Since c € Uy = UB(a,r)

a€eE
We can choose a € E
Such that ¢ € B(a,7,)
Likewise, we can choose b € F
Sothat ¢ € B(b,s;)

Say1, £ S

Thenla—b| <la—c|+|c—b| <1, +s, <25
SowehaveaEB(b,Zsb) cv
Butthena € Panda € Vsoa€VNP=F
Anda € E

Which contradicts the factthat ENF = ¢

Corollary
ForA € R*
A is connected if and only if the only subsets of A. Which are both open and closed in A. Are the sets @ and A

Both open and closed

Compactness

1.22 Definition:

Let A € R™. An open cover of A is a set S of open sets in R" such that A € U S. A subcover of an open cover S of 4
isasubsetT € S suchthat A € UT. We say that 4 is compact when every open cover of A has a finite subcover.

1.24 Theorem:
(The Nested Interval Theorem) Let Iy, I, I, ... be nonempty, closed bounded intervals in R. Suppose that [, 2 I; >
I, o -+, Then Ny I # 0.

Proof: Foreach k > 1,let I, = [ak, bk] with a; < by,. For each k, since I;.;; € I we have ay < ajiq < bpyq < byyq.
Since ay, < a4, forall k, the sequence (ak) is increasing. Since ay < by, < by_; < --- < b, forall k, the sequence
(ak) is bounded above by b;. Since (ak) is increasing and bounded above, it converges. Let a = sup{ak} =

limy, o, @y, . Similarly, (bk) is decreasing and bounded below by a,, and so it converges. Let b = inf{bk} =

limy,_,, by . Fixm = 1. For all k > m we have a,;, < b, < b1 < ::- < by,. Since a;, < by, for all k, by the
Comparison Theorem we have a < b, and so the interval [a, b] is r(f-@{teerﬂﬁ?ypﬁﬂ&?"(ak) is increasing with a; — a, it
follows (we leave the proof as an exercise) that a;, < a for all k > 1. Similarly, we have b, > b forall k > 1 and so
la,b] € [ay, by] = Iy Thus [a, b] € N7y I, and so N§, I, # @

1.25 Definition:
A closed rectangle in R" is a set of the form
R =[ay, by] X [ay, by] X - % [an,bn]

= {(xl,xz, i Xp) € ]Ri"|aj < x; < bj forall j}.

1.26 Theorem:
(Nested Rectangles) Let Ry, R,, R3, ... be closed rectangles in R™ with R; 2 R, 2 R; 2 ++-. Then
o

;Dle * Q.

Proof: Let R, = [akvl,bk 1] X [ak 2 by zJ X e X [ak b n]. Since R, 2 R, 2 -+, it follows that for each index j with
. ! P o . . Divide each interval into two equal subintervals
1 <j <nwehave [alyj,b“- 2 |a,j, by j| 2 -+~ By the Nested Interval Theorem, for each index j we can choose

u; € NE- [a i»b -].Thenforu = (uy, Uy, ..., Uy,) We have u € N%, Ry, .
' o ( v u") e Core: Construct a rectangle to a point. And open cover

. . Must contain, thus a finite subcover, contradiction.
1.27 Theorem: (Compactness of Rectangles) Every closed rectangle in R™ is compact.

Proof: LetR = I; X I X - X I,, where [; = [aj,b‘J with a; < b;. Let d be the diameter of R, thatis d = diam(R) = Zoom in to a point
1

2\z
(E?:l(b]- - aj) ) = 2—:;. Let S be an open cover of R. Suppose, for a contradiction, that S does not have a finite

subset which covers R.Letay ; = a;, by j = by, Iy j = I; = [al,jfbl,j] and Ry = R = I;; X - X I, ,. Recursively, we = —

constructrectangles R = Ry 2 R, 2 Ry 2 +++, with Ry, = I,y X -+ X [ , where I ; = [ak’j,bk}j],and dy =
1

2\2
diam(R,) = (Zj"vﬂ(ka - akvj) ) = %, such that the open cover S does not have a finite subset which covers

any of the rectangles Ry,. We do this recursive construction as follows. Having constructed one of the rectangles Ry,
. . . . . j+b
we partition each of the intervals [} ; = la"'/" bkij into the two equal-sized subintervals [a,w-, uk—’zﬂ] and Choosear>0
an b n — oo, wil] tain since open
Zej7kh .|, and we thereby partition the rectangle R), into 2™ equal-sized sub-rectangles. We choose R to be
2 k.j Y P gle iy q g k+1

equal one of these 2" sub-rectangles with the property that the open cover S does not have a finite subset which
covers Ry, (if each of the 2™ sub-rectangles could be covered by a finite subset of S then the union of these 2™
finite subsets would be a finite subset of S which covers Ry,).

By the Nested Rectangles Theorem, we can choose an element u € N}, R, . Since u € R and S covers R we can
choose an open set U € S such that u € U. Since U is open, we can choose r > 0 such that B(u,r) € U. Since dj, = 0
we can choose k so that dj, < r.Sinceu € R, and diam(Rk) =d; <rwehaveR) S B(u,r) € U.Thus S does have
a finite subset, namely {U}, which covers Ry, giving the desired contradiction.

1.28 Theorem:
LetA € K € R™. If Ais closed and K is compact then 4 is compact.

Proof: Suppose that 4 is closed in R™ and that K is compact. Let S be an open cover of A. Let A = R™ \ A. Since A € / .
U S wehave US U {4} = R" and so S U {A} is an open cover of K. Since K is compact, we can choose a finite
subsetT € S U {A°} with K € UT.Since A € K € UT we also have A € U(T \ {A}). Thus, the open cover S of A

does have a finite subcover, namely T \ {4}, and so A is compact, as required.

1.29 Theorem: (The Heine-Borel Theorem) Let A € R". Then 4 is compact if and only if A is closed and bounded. / /

Preliminary theorem: Theorem. (Closed Subsets of Compact sets are compact
Proof: Suppose that A is compact. Suppose, for a contradiction, that 4 is not bounded. For each k € Z* let U, =

B(0,k) andlet S = {Uy|k € Z*}. Then US = R" s0 S is an open cover of A. Let T be any finite subset of S.If T = @ ////

then UT = @and A € U T. This shows that the open cover § has no finite subcover, T, which contradicts the fact
that A is compact.

Next suppose, for a contradiction, that A4 is not closed. By Part (1) of Theorem 8.16, it follows that A’ & A. Choose
a € A' with a ¢ A. For each k € Z* let Uy be the open set U, = B (a,i)c = {x € ]R"llx —al > %} andletS =

{Uk |k € Z*}. Note that U S = R™ \ {a} so S is an open cover of A. Let T be any finite subset of S.If T = @ then U T =
@soA Z UT (since A is not closed so A # @). Suppose that T # @,say T = {Ukl, Ukyy oo Ukm} withk; <k, <<
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c
k. Since Uy, € Uy, € -+ € Uy, wehave UT = U, Uy, = Uy, = B (a,i) . Since a is a limit point of A we have

c
B (a,;l—) # @ hence B (a,ki) NA+@andsoA ¢ B (a,%) ,hence A € UT. This shows that the open cover S has
m, m m
no finite subcover T, which again contradicts the fact that 4 is compact.

Suppose, conversely, that 4 is closed and bounded. Since 4 is bounded we can choose r > 0 so that 4 € B(0,r). Let
R be the closed rectangle R = {x € R"||x,| < r for all k}.
Note that B(0,7) S R since when x = (xl, ...,xn) € B(0,7), for each index k we have
1
1 n 2
bl = (B < | Y o2 | =lxl <7
i=1

Since A is closed and A € R and R is compact, it follows that 4 is compact, by the above theorem.

Eg Letd = {2|n € 7+}
Show A is not compact

Sketch solution:

+ —pg(i__1 (i) (L 1
Forn €Z*,letU, = B (n'zn(nH)) (n (zn(n+1))' (n + zn(nH)))
Verify that for each n € Z*

1
—€Ugeok=n
n

And hence A € Uy~ Uy,
But A is not contained in the union of finitely many of the sets U,..
Covers the tail?

Limit point
—i={1 +
Eg Let B —A—{;|nEZ }u{o}
Show that B is compact

Etch solution:

Let S be an open cover of B. Choose U € S with0 € U
Choose r > 0 so that B(a,7) S U

Note that B(0, r) contains all the points in B except for
11 1

17
1
Where— < r
n+1

For 1 < k < n, choose
Uy € Ssothat ¢ € Uj,

Then T = {Up, Uy, ..., U, } is a finite subcover of S.

Theorem. (Closed Subsets of Compact sets are compact)
Let A € P € R™ If P is compactand A4 is closed in R™, then 4 is compact.

Proof. Suppose P is compactand 4 is closed (in R™)

Let S be any open cover of 4, since 4 is closed, A€ is open, where A = R" \ A
Since S covers 4, S U {A¢} covers R™.

Hence S U {A€} covers P

Since P is compact, we can choose a finite subset T of §

Such that T U {4¢} covers P.

It follows that T covers A (if a € Athena € U(T U{A°}) = UT U A¢
Soeithera e UT ora € A°buta € Asoa & A°hencea € UT)

Thus, A is compact

Thm
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Chapter 2. Introduction to Vector Valued Functions

201955 522H 2:26

2.1 Definition: Let D € R™. We say that f is a function or map from D to R™, and we write
f:D € R™ - R™, when for every x € D there is a unique point y = f(x) € R™. The set D is
called the domain of the function f.

The graph of the function f is the set
Graph(f) = {(x, f(x))|x € D} € R™*™
We say the graph of f is defined explicitly by the equation y = f(x).
The null set of f is the set (kernel)
Null(f) = £71(0) = {x € D|f(x) = 0} = R™.
More generally, given k € R™, the level set f ~1(k), also called the inverse image of k
under f, is the set
(k) = {x € D|f(x) =k} S R™
More generally still, given a subset B € R", the inverse image of B under f is the set
f~1(B) = {x € D|f(x) € B} = R™
We say the level set £~ (k) is defined implicitly by the equation f(x) = k.
The range of f, also called the image of f, is the set
tmage(f) = Range() = /(D) = {f ()| € D} € ™.
More generally, given a set A € D, the image of A under f is the set
f(A) = {f(x)|x € A} = R™.
We say the range of f is defined parametrically by the equation y = f(x), and for x =
(1, %2, ..., Xn) € D, the variables xy, x,, ..., x,, are called the parameters.

2.2 Note: The graph, the level sets and the range of a function f: D € R® - R™ are
geometric objects such as points, curves, surfaces, or higher dimensional analogues of these.
In accordance with the above definitions, a curve in R? or in R3, or a surface in R?, can be
defined explicitly, implicitly, or parametrically.

A curve in R? can be defined explicitly as the graph of a function f: D € R — R, implicitly as
the null set (or a level set) of a function g: D € R? - R, or parametrically as the range of a
functiona: D € R — R3.

A curve in R? can be defined explicitly as the graph of a function f: D € R — R?, implicitly
as the null set (or a level set) of a function g: D € R* — R?, or parametrically as the range of
amapa:D S R - R3.

A surface in R® can be defined explicitly as the graph of a function f: R? — R, implicitly as
the null set (or as a level set) of a function g: D € R® — R, or parametrically as the range of
a function 6: D € R? - R3.

2.3 Example:

Consider the unit circle x2 + y2 = 1in R2. For f:[—1,1] € R - R given by f(x) = V1 — x2,
the graph of f, thatis the curve y = f(x), is equal to the top half of the unit circle. For

g:R? > Rgivenby g(x,y) = x? + y? — 1, the null set of g, that s the curve x? + y* = 1, is
equal to the entire circle. For a: R - R? given by a(t) = (cost, sin t), the range of a, that is
the curve (x,y) = a(t), is equal to the entire circle.

2.4 Example:

Consider the ellipse which is the intersection of the cylinder x? + y? = 1 with the plane z =
x +y in R3. The ellipse is given implicitly by the two equations x> + y> = landz = x + y
which can be written in vector form as the single equation (x2 + y2 — 1,z —x — y) = (0,0),
and so it is the null set of the function g: R® - R? given by g(x,y,z) = (x> +y? = 1,z —
x— y). To obtain a parametric description of the ellipse, note that to get x? + y? = 1 we can
take x = cost and y = sint, and then to get z = x + y we can take z = cos t + sin t, and so
the ellipse is given parametrically by (x, Y, Z) = (cost,sint, cost + sint). In other words,
the ellipse is the range of the function a: R - R3 given by a(t) = (cost,sint,cost + sin t).
To obtain an explicit description for half of the ellipse, note that the top half of the circle
x?+y? =1isgivenbyy = V1 —xZ and thento get z = x + y we need z = x + V1 — x2,
and so the right half of the ellipse (when the y-axis points to the right) is given explicitly by
(y, z) = (\/1 —x%,x+V1 —7) In other words, the right half of the ellipse is the graph of

the function g: [-1,1] € R - R? given by g(x) = (\/1 —x%,x+ \/Ttﬁ)

2.8 Exercise: The helix in R? is given explicitly by x = cos z and y = sin z. Sketch the curve
and find an implicit and a parametric equation for the curve.

f:R—- R?
(x,¥) = f(2) = (cos z,sinz)

I3 X MATH 247 #1558 1T

Geometric Objects

Parametric
(x,y) =g) = (x(t),y(t)) = (cost,sint)
Orby x = x(t) = cost,andy = y(t) = sint.

The entire circle can be given implicitly by x% + y% = 1

Null set of which h: R? > Ris given by h(x,y) = x2 + y2 — 1



Parametric functions are not unique.

The helix is given parametrically by (x,y,z) = (cos¢,sint,t)
And it is given implicitly by
X =cosz,y =sinz.

(So the helix is the null set of Null(g) where g: R® - R? is given by g(x,y,z) = (x —

cosz,y —sinz)

X = Cosine curve.
Y = sine curve

v} .

curve,

find explicit equations for the top and bottom halves of the curve, and

find a parametric

VAT e - 22 E IO NI [ R,
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2.9 Exercise: The alpha curve is given implicitly by y? = x3 + x% = x%(x + 1). Sketch the

equation for the entire curve. (
The top and bottom halves are given by y = +vx3 + x?
Parametric Equation E
Projection
The line from (0,0) to (1, t) is given parametrically by
(xy) =S(10), seR
= (s,st)
And (x,y) = (s, st) lies on the alpha curve when y? = x3 + x?
s%t?2 =53 +52
s=0ors=t?—-1 \

Sine sheet and cosine sheet intersection.

/\

x =




st = 5% + 54
s=0ors=t?>—1

When s = t? — 1, we obtained the point
(x,¥) =(s,st) = (t2 —1,¢(¢? - 1))

Parametric equation of a curve.
Thus, the alpha curve is parametrically by (x,y) = (tz —1,¢(¢? - 1)), teER

Given (x,y) on the alpha curve, note that t is given by t = %, unless x = 0
Find t, 2
X
Origin being mapped to two points, so not bijective.
Send rational coordinates to rational coordinates

Proof alpha curve number density

2.10 Exercise: The curve which is given explicitly in polar coordinates by r = r(0) is
given parametrically in Cartesian coordinates by (x; y) = a(t) = (r(t) cost,r(t) sint).

Sketch the cardioid which is given in polar coordinates by r = r(8) = 1+cos 8, then find an implicit

equation for the curve.

Polar coordinates

List a table to sketch the curve.

¥ e ¥
1
\ o X
0.5
-0.5
0 =1-s1
0 . p=1-smé
-1
p=l+cosd }
-0.5
/ -1.5 \
-t 2 e
-1 -0.5 o 0.5 1
a 0.5 1 1.5 z
s

p=1-cosé

D\ * p=l+smé

0.5 —

r = cosf
Isacircle.

The cardioid is given parametrically in Cartesian coordinates (taking t = 6 and using x =
rcosf,y =rsinf)

(x,¥) = (rcos,rsin) = ((1+ cost)cost, (1 + cost)sint)
We can obtain an implicit equation in Cartesian coordinates as follows
x=rcosf,y =rsin@,x? + y? = r? as follows.

r=1+cosf
r?=r+rcosf

2 +yt=yx2+y2+x
Oras

x2+yz=(x2+yz—x)2

2.11 Exercise: The twisted cubic, X, is given parametrically by (x,y,2) = a(t) = (¢, % t*).

Sketch the curve and find an implicit and an explicit equation for the curve.
(So itis the range of P: R > R% is given by (x,y,2) = f(t) = (t,t2,t%))

X is given explicitly by y = x2,z = x°
So X is the graph of the function g: R » R? given by (y,2) = g(x) = (x?,x%)

X is given implicitly by y = x2,z = x3

431X MATH 247 [#155 10 71
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zZ=xy

(so X is the null set of h: Rﬁ R? given by (w,v) = h(x,y,2z) = (y —x2,z — x%)

xy)s (¢, )
Y=

('X'Z\‘:(-t/ts)

Sketch

Right handed Z &

b4

A

/F (4.2): (‘tz,ts)

\7

\

Let us verify that Range(f) = Null(h)

Where f(t) = (¢, ¢%,t%)
h(x,y,2) = (y —x%,z —x?)

Proof:
Let (x,y,z) € Range(f)
Choose t € Rsuch that (x,y,2) = f(t) = (t,t%¢3)

Theny =t? = x2
z=t3=x3

Soh(x,y,z) = (y —x%z—x%) = (0,0)
Hence (x,y,z) € Null(h)

Now let (x,,z) = Null(h)

So (y —x2,z—x%) = (0,0)

y=x?andz= x>
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Lett =x
Then

f@®) = (tt%t%) = (x,x%x%) = (x,,2)
Hence
(x,7,2) € Range(f)

2.12 Remark: In order to sketch a surface which is defined explicitly as a graph z = f(x,y)
or implicitly as a level set g(x,y, z) = k, it often helps to first sketch curves of intersection
of the surface with various planes x = ¢, y = c or z = c. The intersection of the graph z =
f(x,y) with the plane z = c is given implicitly by f(x,y) = c. The intersection of the level
set g(x,y,2) = k with the plane z = c is given implicitly by g(x,y,2) = k.

2.13 Exercise: Sketch the curve of intersection of the cylinder x? + y? = 1 with the
parabolic sheet z = x2 and find implicit, explicit, and parametric equations for the curve.

2.14 Exercise: Sketch the surface z = x% + y?2.

Sketch z = x2 + 4y?

z=0
x2+4y2=0
(x,¥) = (0,0
z=1
x2+4yr =1
xz yZ
—1—+T:1
i
z=4
x?+4y? =4
22 y?
L\
1N
P s
x=0,z=4y?
y=0,z=x?
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2.15 Exercise: Sketch the surface z = 4x? — y2.

z=0,x=%2y
2
z=1x"-%=1 (hyperbola)

L2y _/
z=47 /
B

2.16 Exercise: Sketch the surface x? + 4y? — z2 = 0.

Same cross section

2.17 Exercise: Sketch the surface (x,y,z) = (v, v,u* + 4v* — 3)

(x3.2) = (wv,u? + 4v? - 3)
Sameas z = x% + 4y? — 3

x2+yt+z2 =12
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Math Longitude
Z=1Ccos¢}

x =rsin¢cosd
y=rsin¢gsinf

The sphere

x2+yt+z2 =12

Is the range of f: R? - R3

(x,y,z) = f(9,¢) = (rsin¢ cos@,rsin¢ sin9,rcos¢)

2.18 Exercise: Find a parametric equation (x, v, Z) = (r(qb, 9) for the sphere of radius r
centred at the origin, where the parameters ¢ and 6 are the angles of latitude and
longtitude. In other words, find (r(qb, 6) so that when (x, v, z) = (r(qb, 9), ¢ is the angle
between (0,0,1) and (x, y, z) and @ is the angle from (1,0) counterclockwise to (x,).

2.19 Exercise: Find implicit and parametric equations for the torus which is obtained by
rotating the circle (x,z) = (R + r cos 8, r sin 8) about the z-axis.

2.20 Definition: An affine space in R" is a set of the form p + V = {p + v|v € V'} for some
p € R™ and some vector space V € R™. The dimension of the affine space p + V is the same
as the dimension of V. The set p + V is called the affine space through p parallel to V, or the
affine space through p perpendicular to V*, where V* is the orthogonal complement of V/,
givenby V* = {x € R*|x-v =0forallv € V}.

2.21 Example:

In R3, the only zero dimensional vector space is the origin {0}, the 1-dimensional vector
spaces are the lines through the origin, the 2-dimensional spaces are the planes through the
origin, and the only 3-dimensional vector space is all of R3. The 0-dimensional affine spaces
are the points in R3, the 1-dimensional affine spaces are the lines in R?, the 2-dimensional
affine spaces are the planes in R3, and the only 3-dimensional affine space is all of R3.

2.22 Definition:

Let f: R™ - R™. The function f is called linear when it is of the form f(x) = Ax for some
matrix A € My, (R), and f is called affine when it is of the form f(x) = Ax + b for some
matrix A € Mp,«,(R) and some vector b € R™.

2.23 Note:
Let A € My, and let f: R™ — R™ be the linear map f(x) = Ax. Let uy, ..., u,, be the column
vectors of A and let vy, ..., v, be the row vectors of A so that we have A = (ul, . un) =
(vl, ) vm)T. Let c be a point in the range of f, say f(p) = c. Then
Range(f) = {Ax|x € R"} = {TL, w;x; |each x; € R} = Span{w,, ..., un} = Col(4),
Null(f) = Null(4) = {x € R"|Ax = 0} = {x € R"|v; - x = 0 forall i} = Row(4)*,
f1(c) = {x € RMAx = c} = {x € R*|Ax = Ap} = {x € R"|A(x — p) = 0}
= {p +y € R*|4y = 0} = p + Null(4),and

Graph(f) = {(:x) |x € ]R"} = Span {(:),(Z), s (Z:)} = Col (:1)
It follows that

dim (Graph(f)) =n

dim (Range(f)) = rank(4) and

dim (Null(f)) = dim(f ~1(c)) = nullity(4) = n — rank(A).

2.24 Note: Let A € My, (R), let b € R™ and let f(x) = Ax + b. Let ¢ be in the range of f
with say f(p) = c. Then

Graph(f) = {(Ax):— b) |x € ]R"} = (2) + Col (2),

Range(f) = {Ax + b|x € R"} = b + Col(4),and

f7Hc) ={x e R"Ax + b =c=Ap + b} = {x € R*A(x —p) = 0} = p + Null(4),
Note that if uy, uy, ..., u, are the columns of 4 and ey, e,, ..., e, are the standard basis vectors
for R, then we have f(0) = b and f(e;) = Ae; + b = u; + b. If vy, ..., vy, are the row vectors
of Aand k = ¢ — b, then since

fX)=coAx+b=coAx=k o v;-x =k;foralli
It follows that the level set f(x) = c is the intersection of the affine spaces v; - x = k;, and
we note that the space v; - x = k; is the affine space in R™ of dimension m — 1 through p
perpendicular to v;.

2.25 Exercise: Define f: R > R? by f(x,y,2) = (x + 3y + 22,2z + 5y + 3z) and let
(a,b) = (1,1). Find a parametric equation for the level set f(x, v, z) = (a,b).

4 1 1 2
2.26 Exercise:LetA=(1 0 2 |andb=| 1 |andletf(x) = Ax + b.Find an implicit
5 2 -4 -1

equation for the range of f.

Sketch.
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Short test.
Level curves.

Easy tests

Half way of computation and proof
Prove theorems.

Know solution to every assignment questions.
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Test 1 Preparation

201945 823H 5:02

NOTE: The MATH 247 Term Test 1 will be held on
Monday May 27, from 12:30-1:20 pm, in MC 4063.

The test will cover Chapters 1 and 2 (omit sections 1.22-1.29)
and Assignments 1 and 2. There will be 4 questions.

you will be asked to prove 1 of the following 3 theorems:
Theorem 1.19 Part 3 (Closure and Limit Points)

Theorem 1.31 Part 1 (Open Subsets of P)

Theorem 1.32 Part 1 (Connected Subsets of P)

No calculators will be allowed.

K <http://www.math.uwaterloo.ca/~snew/math247-2019-S/index.html>

1.19 Theorem: (Properties of Interior, Limit and Boundary Points)
LetA € R™.

1. A% is equal to the set of all interior points of A.

2. Aisclosed if and only if A" € A.

3. A=AUA.

4. 9A = A\ A% orequivalently A = A UdA and A° N 9A = @

To prove Part (3) we shall prove that A U A’ is the smallest closed set which contains A. It is clear that A U A’
contains A. We claim that A U A’ is closed, thatis (A U A")¢ is open. Leta € (A U A")¢, thatisleta € R" witha ¢ A
anda ¢ A'.Since a € A’ we can choose r > 0 so that B(a,7) N A = @. We claim that because B(a,7) N A = @ it
follows that B(a,r) N A" = @.

(Point b arbitrarity close to a)

Suppose, for a contradiction, that B(a,r) N A’ # @. Choose b € B(a,r) N A'.Since b € B(a,r) and B(a,r) is open,
we can choose s > 0 so that B(b,s) € B(a,r).Since b € A’ (b is a limit point) it follows that B(b,s) N A # @.
Choose x € B(b,s) N A. Then we have x € B(b,s) € B(a,r) and x € A and so x € B(a,r) N A, which contradicts the
factthat B(a,7) N A = @.

Thus B(a,r) N A" = @, as claimed. Since B(a,7) N A = @ and B(a,7) N A’ = @ it follows that B(a,r) N (AU A") = @
hence B(a,r) € (AU A')°. Thus proves that (4 U A")€ is open, and hence A U A’ is closed.

It remains to show that for every closed set K with A € K we have AU A’ € K. Let K be a closed set in R"™ with A ©
K. Note that since A € K it follows that A’ € K’ because if a € A’ then for all 7 > 0 we have B(a,7) N A # @ hence
B(a,r)NK # @ and soa € K'. Since K is closed we have K’ € K by Parts (2). Since A’ € K’ and K' € K we have
A’ € K.Since A € Kand A’ € K we have A U A’ € K, as required. This completes the proof of Part (3).

1.31 Theorem:

LetACPCR"
1. Aisopenin P ifand onlyif A = U N P for some set U € R™ which is open in R™.
2. Aisclosedin Pifand only if A = K N P for some set K € R™ which is closed in R".

Proof:
1. Suppose A is open in P. For each a € A. Choose 7, > 0 such that Bp (a, ra) C A, thatis B(a, ra) NnPCcA.
Let U =Ugey B(a, ra)
Note that U is open in R", because it is a union of open sets in R™.
Note that A € U (since for eacha € 4,a € B(a,rA) CU)andASPsoASUNP
Also,note that U N P = (Ugea B(a,72)) NP = Ugea(B(a, 1) N P) = UgeaBr(a1,) € 4
Since BP(a, ra) C Aforalla € A.

We constuct A° = U

Note: U here is just another way of describing A.
Thuswe have A =UNP.

Suppose conversely, that A = U N P, where U € R" is an open set in R" U here acts like a bridge that get the openness in R™

Leta € A.Sincea € Aanda=UNP S U.Wehavea € U. To A

Since a € U and U is open in R™. We can choose r > 0 so that B(a,r) € U.

Thenwe have Bp(a,7) = B(a,r)NPSUNP =4 Openness of U -> Openness of A in P. (Take the intersection)

That 4 is open in P.

End of Part 1.

1.32 Theorem: Let A € P € R"™. Define 4 to be connected in P when there do not exists set E, F € P which are
open in P and which separate A. Define A to be compact in P when for every set S of open sets in P such that 4 ©
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U S there exists a finite subset T € S such that A € UT. Then

Ais connected in P < A is connected in R™

Proof:

For the purpose of this theorem alone, we define A to be

Suppose that 4 is disconnected in R™. Let U and V be open sets in R™ which separate A.
LetE=UNPandF=VnNnP.

Note that E and F are open in R™.

Verify that E and F separate A

Suppose conversely that A is disconnected in P. Choose open sets E, F € P which are open in P and separate A.

Choose open sets U and V in R™
SuchthatE =UNPandF =V NP.

Wehave UNA2ENA#QVNA2QFNA+Q,ACEUF S UUV,butwemighthaveU NV # @
For each a € U, chooser, > 0 so that Bp(a,Zra) C U (we can do this since U is open in R™)
Thenlet U, = Uqer B(a,7,)

Note that U, is open in R™ (since it is a union of open sets)
And E € U, (since eacha € E liesin B(a, ra) cU

And Uy NP = (Ugep B(a,1)) NP = Ugep(B(a,1,) N P) = Ugep Br(a,7)

AndE € PsothatE € Uy NP
And U, € U (since each B(a,r) € U)

SoUynPESUNP=E
ThusE =Uy NP

Similarly, for each b € V choose s, > 0 so that B(b, Zsb) cv
Thenlet Vy = Uper B(b, sb)
And thenwe haveV NP =F

Wehave ENACUyNA+Q
@+FNACVynA
AndACSEUF CUyuV,

We claim that Uy NV, = @

Suppose, for a contradiction, that Uy NV # @
Choosec € Uy NV,

Since c € Uy = UB(a,r)
a€E
We can choosea € E

Suchthatc € B(a, ra)
Likewise, we can choose b € F
Sothatc € B(b, sb)

Sayr, < §p

Thenla—b|<l|la—c|+|c—b| <1y +sp, <2sp
Sowe havea € B(b, Zsb) cv

Butthena € Panda€Vsoa€eVNP=F
Anda €E

Which contradicts the factthat ENF = @

Topic summary:

Dot product
¢ Bilinearity
e Symmetry
¢ Positive Definiteness
Norm / length
¢ Positive Definiteness
e Scaling

o |x iy|2 =x2+2(x-y)+ |y|2
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¢ The Polarization Identities

¢ The Cauchy-Schwarz Inequality

e The Triangle Inequality
Distance

¢ Positive Definiteness

e Symmetry

¢ The Triangle Inequality
Angle

e O(u,v) = cos 1=V e [0,7]
[ullv]

Orthogonal

e u-v=_0
Sphere
Open ball
Closed ball
Punctured ball

Bounded
A € B(a,r) for some a € R" and some 0 < r < R.
Open
For every a € 4, there exists r > 0 such that B(a,r) C 4,
Closed
A° = R™\ Aisopenin R"
Basic Properties of Open Sets
Basic Properties of Closed Sets
Interior
The interior of A is the largest open set which is contained in A.
Closure
The closure of 4 is the smallest closed set which contains A. In other words, A € 4 and A is closed, and for
every closed set K with A € K we have 4 € K

1.17 Corollary
1. (AO)O =A%and A = A.
2. Aisopenifand onlyif 4 = A°
3. Aisclosedifandonlyif A = A

Interior point

Somer > 0,B(a,r) € A

Limit point

B*(a,)NA+Q

A!

Boundary point

B(a,r) N A # @,B(a,r) N A + Q.
0A

Separate

Connected
Disconnected

Open ball in P
Closed ball in P

Connected in P

Function
Domain

Graph

Explicit

Null set

Level set
Inverse image
Implicit

Range / Image
Parametrically

Parameters

Affine space

Dimension
Orthogonal
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Linear
Affine
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Chapter 3. Limits and Continuity

3.1 Definition: For p € Z, let Z=, = {u e Zin = p} = {p.p+1.p+2,---}. For a set
A, a sequence in A is a function a : Z=, < A for some p € Z. We write (a,),2, to
denote the sequence a @ Z=, — A given by a(n) = a,, where a, € A forall n > p. A
subsequence of the sequence (a, )=, s a sequence of the form (b )=, with b, = a,,, for
some p= ny < iy for all k=g,

3.2 Definition: Let (a,),>, be a sequence in R™. We say the sequence (a, )q=, is
bounded when

Fr=0Wnelsy lag| <7

For b € R™, we say that the sequence (i, ), >, converges to b and write lim a, = b (or
- — O
ay — b) when
We>0 AINEZ=y Ve Zap(n > N = [a, — b| < ¢).

We say the sequence (a,,),=, diverges to co and write lim a, = oo (or a, — o) when
- e —+ 00

Wr>03NE Zzp VnEZzp(n=>N = |a,| = r).
We say that the sequence (a,),=, converges when it converges to some point b € R™
and otherwise we say that it diverges.
3.3 Theorem: (Convergent Sequences are Bounded) Let (ay ),>, be a sequence in R™.
If (6 )=y converges in R™ then (a,),=, is bounded.

Proof: Suppose that (ay),=, converges in R™. Let u = lim a, € R™ Choose N = p
- n—Foo

such that n > N = |n, —u| < 1. For n = N, by the Triangle Inequality we have

lan] < lay —ul+|u| < 14 |u|. Thus we can choose r = max{|a,,|. g ] Jay—a ] 14 u }

to obtain |a,| < r for all n > p, and so the sequence {(a, },,>, is bounded, as required.

3.4 Theorem: (Unigueness of Limits of Sequences) Let (ay,),=, be a sequence in R™
and let w,v € R™ U {oc}. If lim a, = wu and lim a, = v then u = v.
n—r0o0 n—ro0

Proof: We prove the theorem in the case that u, v € R™ and leave the case that u = oo or
v = 0o as an exercise. Suppose that lim a, = v € R™ and lim a, = v € R™. Suppose,
TE—O0 n—o0

for a contradiction, that u # v. Choose Ny = p such that n > Ny = |a, —u| < l“;"l anc

choose Ny = p such that n = Ny = |a, —v| < I“%l Let = max{N;, Na}. Forn = N
. u—v w—v] TPTRR . )
we have |u —v| < [u—al +[a —v| < 557 + 55— = |[u — v| which is impossible. Thus we

must have w = v, as required.

3.5 Theorem: (Limits of Subsequences) Let (a,, )=, be a sequence in R™ and let (a,, )iz,
be a subsequence of (ay )yzy. If lim a, =u € R™ U {oc} then lim a,, =u.
= o k—oo
Proof: We give the proof in the case that w € R™. Suppose that lim a, = v € R™
T—o0
and let (a,, )g=q be any subsequence of (a,). Let e = 0. Choose N = p such that
n=N=|a, —u| < e Choose M > g such that k¥ > M = ny > N (we can do this
since each ny € Z with ny. < ngy and hence ny — 0o as & — o). Then for & = M we
have ny = N and so |a,, —u| < e. Thus LIim iy, = 1, as reguired.
—ro0

1
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We say that (xy), _ . is Cauchy when
Ve >0 3N € Zyp

Vk, £ € Zo,y

kt=2N=> |xk—x¢:| <e€



3.6 Remark: It follows from the above theorem that the initial index p of a sequence
(@ )r=p does not effect whether or not the sequence converges, and it does not influence
the value of the limit. For this reason, we often omit the initial index p from our notation
and denote the sequence (ay, ), =, simply as (a, ).

3.7 Definition: Let (a,),=, be asequence in R™. Forn > plet a, = (0,1, 002, 0 ).
For each index k with 1 < k& < m, the k' component sequence of (a,),>, is the
SeqUENce (g g )nzp = (ks Gpps -+ 0] Note that the sequence {a, ), >, in R™ determines
and is determined by its component sequences (ag g )nzp-

3.8 Theorem: (Limits of Component Sequences) Let (a,),=, be a sequence in R™, say

= (G 1. 02, 0 ) € R

(1) (ag)nzp is bounded if and only if (ag g )n=p 5 bounded for all indices k.
{2) For b= (b1, -+, by ) € R™ we have lil)n a, = b if and only if li{n g = b for all k.
n o0 n o0

Proof: Suppose that (), >, is bounded. Choose r = () such that |a,| < r for all n = p.
Let n = pand let 1 <k < m. Then |a, ;| < |a,| <+ and so the sequence (a,, g )n=p is also
bounded. Now suppose, conversely, that (ay, i )n>p is bounded for all indices k. For each k,
chose ry. > 0 such that |a, .| < v foralln = p Let r =y +-- +r,,. Then for alln = p,
by the Triangle Inequality we have |a,| < |an 1|+ |anz2|+ g ml < rmitre+ o Frm =7
and so the sequence (a,),=, is bounded. This proves Part (1).

To prove Part (2), suppose first that ﬂli_‘nrlxa,, = b Let ¢ = 0 and choose N > p so
that n = N = |an bl < e Let 1 <k < m. Forn > N we have |a,,_*. bi| < lan—bl <€
and so lim a, ;= by, Now suppose, conversely, that lim a,, ;. = by for all indices k. Let

n—oo G
€ = (. For each index £, choose Ny, = p such that n = N — |(1'”J,- — ilk| < £ Then for

m’

1
n = N, by the Triangle Inequality we have |a, b < 37 |agp—bi| < e and so lim a, = b
k=1 b0

3.9 Theorem: (Operations on Limits of Sequences) Let (a,) and (b,) be sequences in
R and let ¢ € R. Suppose that lim a,, = uw € R" and lim b, = v £ R". Then
oo —ho0

(1) lim (g, +by) = u+wv,

n—oo
{2) lim (ea,)=rcu,

il.—’w
(3) hm_ [etn| = ul,

n—oo
{4) “H_T’tc:cl{ﬂ.,l why) = u-v, and
(5) ifm =23 then lim {a, = b,) =u = v.

i+ 00

Proof: These follow easily from Part (2) of the above theorem and from known properties
of sequences in R. For eample, to prove Part (1), note that

lim (ag 4+ by )i = lim (an g + by ) = i oay g+ T by o= wp + v = (0 + 0.
00 : n—0a T n—o0
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(X")nzp converges < (xn'k)nzp converges for eachindex 1 < k <m

And for u € R™ withu = (u;, u,, ,u,n)
lim x, =u e lim x,, =w foralll <k <m.
n-oo n-o

Proof:

Let

N = max(Ny, ..., Np)

m m
|Y| = ZYKek < Zlykek|
k=1 k=1

e are the standard basis vectors
By triangle inequality.



3.10 Theorem: (Sequential Characterization of Limit Points) Let A € R™ and let
a € R™. Then a € A" if and only if there exists a sequence (ay) in A\ {a} such that
lim =, = a.

b0

Proof: Let a € A", Foreach n € Z", since a € A’ we have B (a, %)HA # I so we can choose
an element x, € B* (n. %) MA and then we have r,, € A% {a} and |z, —a| < f Given e =0
we can choose a positive integer N > } and then we have n > N = |o,,—a| < % < % < £,
Thus (i, )n=1 18 a sequence in A% {a} with lim @, = a.
- n-—»oo
Suppose, conversely, that (a,),=, is a sequence in AN {a} with lim z, = a. Let
- oo
r = 0. Since lim @, = a we can choose N = pso that n > N = |¢, —a| < r. Then we
n—oo

have zy € AN A and [xy —a| < r so that 2y € B* (a, r), and hence B*(a,r) # (0. Since
r = 0 was arbitrary, it [ollows that a € A"

3.11 Theorem: (Sequential Characterization of Closed Sets) Let A © R™. Then A is
closed (in R™) if and only if every for every sequence in A which converges in R™, the
limit of the sequence lies in A.

Proof: Suppose that A is closed. Let (), be a sequence in A which converges in

R". Let a = lim a,. Suppose, for a contradiction, that a € A. Since a € A we have
n—oo

A=A {a} and so (x,) is a sequence in A {a}. Since (i) is a sequence in A% {a} with

lim x, = a, we have a € A’ by the Characterization of Limit Points. Sinee A is closed

Te—H

we have A" C A and s0 a € A, giving the desired contradiction.

Suppose, conversely, that for every sequence in A which converges in R”, the limit
of the sequence lies in A. Let a € A’. By the Characterization of Limit Points, we can
choose a sequence (&,) in A% {a} such that lim r, = a. Then {x,) is a sequence in A

n=%00

which converges in R", and so its limit must lie in A, thus we have a € A. Since a € A’
was arbitrary, this proves that A" C 4 and so A is closed.

3.12 Theorem: (Bolzano-Weierstrass) Every bounded sequence in R™ has a convergent
subsequence.

Proof: For this proof, we shall label the components of an element in R™ using superscripts
rather than subscripts, se we shall write an element = € R™ as (2!, 2%, .-+ | 2™). Let (x,,) be
a bounded sequence in R™, Then the first component sequence (1) is a bounded sequence
in R. By the Bolzano-Weierstrass Theorem for sequences in R, we can choose a convergent
subsequence (-Tle. ), where ny < ng < -+~ Since the second component sequence (2 is
hounded, the subsequence (.'::‘f”] is also bounded so we can choose a convergent subsequence
(x?,,k }, where 1 < f3 < ---. Note that the sequence (a",l,rk] also converges because it is a
subsequence of the convergent subsequence (2}, ). Since the sequence (r})) is bounded, the

subsequence (i ;, ) is also bounded so we can choose a convergent subsequence (a? o )

T
where by < ks < -~ We then obtain convergent subsequences of each of the first 3
component sequences () for i = 1,2,3, namely the subsequences (x5, ). We repeat the
Fj
procedure until we obtain simultaneous subsequences of all m component sequences (ixf),
which we can combine to form a subsequence of the original sequence (x,,) in R™,
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Closedness

Keep extracting subsequences

Write elements



Vacuously
True if
Not a limit
Point

i

X:Z% - A\ {a}

3.13 Definition: Let (a, )=, be a sequence in R™. We say that (a,) is Cauchy when
Y0 AN € By, Wk (€2, (s:, (> N = |, —af < ).

3.14 Theorem: (The Completeness of R™) For every sequence in R™, the sequence

converges il and only if it is Cauchy.

Proof: Let (x,) be a sequence in R", Suppose that (z, ) converges, Let a = lim =, Let

n—og

€ = 0. Choose N so that n = N = o, —a| < % Then for k. £ = N we have |o, —a| < %

and [xy — a| < § so |z — x| < |z~ al 4 Ja — @y < e Thus (x,) is Cauchy.

Now suppose that (#,, ),>p is Cauchy. Choose N = pso that k£ = N = |z, —x| < 1.
Then for all ¥ > N we have |z, — xn| < 1 hence |og| < |op —2n| + |zn| < 1+ |zn],
and so (xy,) is bounded by max {|rp|, [rpgrls - lenaal, l+|.1:.'\r|}- Choose a convergent
subsequence (i, ) and let a = Rlim &y, Let e = 0. Since (ry,) is Cauchy we can choose M

oo
so that n,f > M = |z, — 34| < % Since &Iim Ty, = a we can choose k so that ng, = M

and [r,, —a| < % Then for n = M we have |r, —a| < |&, — ., | + 2., —a < €

3.15 Definition: Let A € R” and let f: A — R™. When a is a limit point of 4 and

b e R™, we say that f(z) converges to b as x tends to a, and we write lim f(x) = b
Tk

when

Ye=0 b =0vreA (0 < e —al<d=|flz)—bl < ().

When a is a limit point of A, we say that f{x) diverges to oo and we write lim f{x) = oo
r—a

when

Yr>0 3650 Yoe A (u <lr—a|<d=|f(x)] > 1‘).
3.16 Theorem: (Sequential Characterization of Limits) Let f: A C R" —+ R™, let a be
a limit point of A and let w e R™ U{oc}. Then lim f(x) = w if and only if T flx,) =u
r—ia n—oa
for every sequence () in A {a} with lim x, = a.
1=k 0o
Proof: We give the proof in the case that v € R™. Suppose first that lim f(z) = € R™.
F—ra
Let (ry,) be a sequence in A {a} with &, — a. Let € > (. Since |i_l&1 flr) = u we can
i a

choose § = 0 so that 0 < |z —a| < d = |f(x) — u| < €. Since x, = a we can choose N so

that n = N = [r, —a| < 6. For n > N we have |o, —a| < § and we have x,, # a (since

r, € AN {a}) and so 0 < |z, — a| < § and hence | f(x,) — u| < e Thus lim f(r,) = u,
o0

as required, Negation of the if then statement
Suppose, conversely, that lim f(x) # w. Choose e such that for every 6 = () there
T+

exists & € A such that 0 < [z —a| < d and |f(x) —u| = ¢, For each n € Z%, choose x, € A
such that 0 < |x, —a| < :—? and [f(x,) — u| = e. For each n, since 0 < |z, — a| we have
rp # a s0 the sequence (x,) lies in A% {a}. Since |z, —a| < i for all n € Z1 it follows
that o, — a. Since [z, —u| = ¢ for all n, it Tollows l.hﬂ:hj)gj Tlre ) # w. Thus we have

found a sequence (r,) in A% {a} with &, — e such that lim f(r,) # w
Ta=b 00

3.17 Note: Using the Sequential Characterization of Limits, many properties of limits of
sequences immediately imply analogons properties of limits of function. We list some of
these properties in the following theorems.

Axiom of Choice......

Axiom — For any set X of nonempty sets, tllere exists a choice function f defined on X.

K <https://en.wikipedia.org/wiki/Axiom of choice>

3.18 Theorem: (Unigueness of Limits of Functions) Let f: AC R —+ R™, let a € A,
and let u,v € R™ U {no}. If _]_i_IEL flx) = w and _]_i_I{l fle) = v then v = v,

Proof: This ean be proven by imitating the proof of the Uniqueness of Limits of Sequences,
Alternatively, we can use Unigueness of Limits of Sequences together with the Sequential
Characterization of Limits as follows. Since a € A’ we can choose a sequence (z,) & A'\ {a}
such that @, — a. By the Sequential Characterization of Limits, e _!.E::‘ fl) = u we

have lim f(z,) = v and since lim f{x) = v we have lim f(r,) = v. By the Uniqueness
TE=+00 T=ril =t

of Limits of Sequences, since ]Hn flzy) = u and lil)n fleg) = v it follows that u = v,
3.19 Theorem: (Local Determination of Limits of Functions) Let A C R", let a € A,
let B=B"a,r)nA withr =0, Let [:A— R™ and let g: B — R™ and suppose that
flx) = glz) for all x € B. Then ].i_I)Il flx) exists in R" U {oo} if an only if _|_i_l;'11 ilx) exists
in R™ U {oc} and. in this case, the limits are equal.

Prool: We leave the proof as an exercise.

3.20 Definition: Let f: A C R™ — R™. We can write f(x) = (fi{x). falx).---. fu.(2))

where fi. : A = R for each index k. Then the function fi. is called the &' component

function of f. Note that fi = py o f where py. : R™ — R is the I projection map given

by prlyt, - W Um) = Ve

3.21 Theorem: (Limits of Component Funetions) Let f: A C R® — R™ be given by

fla) = (filx). -+, fulx)). let a be a limit point of A, and let b= (by. by, -+ by,) € R™.

Then 11_131 fle) = b if and only if ]i_I)Il felz) = by for all indices k.

Proof: Suppose that _]_i_1}1 flx) = b Let (x,) be any sequence in A\ {a} with 7, — a.

By the Sequential Characterization of Limits, we have lim f(r,) = b DBy Limits of

n—00

Component Sequences, we have 11_1‘11 felry) = by for all indices k. Bw the Sequential
n oo

Characterization of Limits again, it follows that 11_111 felx) = by for all indices k.

Qunmnen converesle that Lo £0el — b for all B Tat (e 4 he ane cammonen in AL Tal
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Don't have to be strict...


https://en.wikipedia.org/wiki/Axiom_of_choice

By the Sequential Characterization of Limits, we have lim f(x,) = b DBy Limits of
n—00
Component Sequences, we have 11_1‘11 felry) = by for all indices k. Bw the Sequential
n oo
Characterization of Limits again, it follows that 11_111 felx) = by for all indices k.
Suppose, conversely, that Ii_[)u frlx) = by, for all k. Let () be any sequence in A {a}
vt
with x, — a. By the Sequential Characterization of Limits, we have lim fi{z,) = b
TE—+00
for all k. By Limits of Component Sequences, we have lim f{x) = b. By the Sequential
Te—+ 00
Characterization of Limits again, it follows that _li_1‘11 fle) = b
3.22 Theorem: (Operations on Limits of Functions) Let f,g: ACR" = R™, leta e A
and let ¢ € R. Suppose that lim f(x) = v € BR™ and lim g(x) = v € R™. Then
r—a n—og
(1) lm (£ + 9)(x) =u+v,
{2) lil}l{cf)(;r) = cu,
T @
(3) lim | f|(x) = |ul,
Tt
(4) lim (f - g)(x) = wewv, and
T+ i
(5) when m = 3 we have :n]lma[f < g{w) = ux v

Proof: This follows from Operations on Limits of Sequences, together with the Sequential
Characterization of Limits.

3.23 Theorem: (Comparison Theorem) Let f.g: A C R" —@-’ith flx) < glx) for all
reAandletac A

(1) If lim f{x) =n e RU{+o00} and lim glz) = v € RU{+oo} then u < v.

xr—ia ki
{2) If lim f(x) = oo then lim g(x) = oo,

Tk T
(3) If lim g(x) = —oo then lim f(z) = —oc,

i oo
Proof: This follows from the Comparison Theorem for Sequences in R together with the
Function take Sequential Characterization of Limits.
feal values 3.24 Theorem: (Squeeze Theorem) Let f,g.h: A CR™ vith f(z) < g{z) < h(x)

for all v € A, and let w € RU{+oo}. If lim f(x) = u = lim h(x) then lim g{z) = u.
ki T—a r—a

Prool: This follows from the Squeeze Theorem for Sequences in R together with the
Sequential Characterization of Limits.

3.25 Definition: Let A C R", let B CR™, and let f: A — B. For a € A, we say that
[ is continuous at a when |x — a| > 0is not needed

Ye=0 35 >0 Yred {|I—3| < 8= |f(x) - fla)| < e). Don't need to be strict

We say that [ is continuous (in A) when f is continnous at a for every a € 4. We say
that f is uniformly continuous in A when like an expansion

We=0 I=0Vac AVeeA ([v—al < d=|flx) — fla)] <€). ’S‘oa::yat:,'::g:gemc'

3.26 Theorem: (Continuity at Limit Points and Isolated Points) Let A € R” and let
frA—R™
(1) When a is a limit point of A, f is continuous at @ <= lim f(z) = fla).
&Ik
{2) When a is an isolated point of A, f is always continuous at a.
Prool: We leave the proof as an exercise.
3.27 Theorem: (Sequential Characterization of Continuity) Let A CR", let f: A —+ R",
and let a € A. Then [ is continuous at a if and only if ]i_I)I‘L‘ fleg) = fla) for every sequence

(Tp)n=p in A with lim x, = a. Should be able to proof...
ft—+00

Proof: Suppose f is continuous at a. Let (x,,) be any sequence in 4 with z,, — a. Let e = 0.
Since f is continuons at a we can choose & = 0 so0 that |v —a| < 6 = |f(z) — fla)| < =
Since r, — a we can choose NV so that n > N = |r, — a| < §. Then for all n > N we
have |z, —a| < & henee | f(z,) — fla)] < €, and s0 ,,lil,{i,f("c") = fla), as required.
Suppose that [ is not continnous at a. Choose € = 0 such that for every 6 = 0 there
exists # € A such that |# —a| < § and |f(x) — f(a)| = e. For each n € Z*, choose x, € A
such that [z, —a| < L and |f(z,) — fla)| = €. Since [, —a| < L for all n € Z* it follows
that x,, — a. Sinece |f(r"} - f{a)| = ¢ for all n, it follows that r!121310 fleg) # fla). Thus

we have found a sequence (x,) in A with »,, — a such that _li_1‘n flzn) # fla).

3.28 Theorem: (Local Determination of Continuity) Let A C R", let a € A', and let
B = B*(a,r)n A where r > 0. Let f: A — R" and g : B — R" and suppose that
flx) = glz) for all z € B. Then [ is continuous at a if and only if g is continuous at a.

Proofl: The proof is lelt as an exercise.
surround a with a disk, nothing changes
6
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Cool!

Inverse image of
open set is open

Inverse image of
closed set is closed

3.29 Theorem: (Continuity of Component Functions) Let A € R" and let f: A — R™,
Then [ is continuous at a if and only if fi, is continuous at a for every index k.

Proof: This can be proven by imitating the proof of Continuity of Component Sequences
or by using the result of Continuity of Component Sequences together with the Sequential
Characterization of Continuity.

3.30 Theorem: (Operations on Continuous Functions) Let A CR"™, let fog: 4 — R™,
let a € A and let ¢ € R. I f and g are continuous at a then so are each of the functions
f+ag. cf. |f| and f -« g, and also f = g in the case that m = 3.

Proof: This follows from the Sequential Characterization of Continuity along with Opera-
tions on Limits of Sequences.

3.31 Theorem: (Composition and Limits) Let f: ACR" - R™, let y: BCR™ —+ R'
andlet h=gof:C CR" = R where C' = AN [~YB). Leta e (" C A" and let b€ B'.
Suppose that lim f(x) = b and lim g(y) = c € R' U {00},

v y—+h Add: (C = @)
(1) If fle) £ b forall z € O {a} then 111_1‘1}| hir)=e.

(2) If b€ B and g is continuous at b then lim hix) = g(b) = .

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that

b e B and g is continuous at b. Note that since b € B and g is continuous at b we have

glb) = lim g{y) = ¢ by Theorem 3.26. Let (x,} be any sequence in C'Y {a} with z,, — a.
y—b

Since €' C A, the sequence (x,) also lies in A% {a}. By the Sequential Characterization

of Limits of Functions, since lim fx) = b we have lim f{x,) = b For each index n we
T—kir n—+a0

have o, € C' = AN f~YB) so that f(x,) € B, and so the sequence (f(:,,)} lies in B. By

the Sequential Characterization of Continuity, since g is continuous at b and f(x,) — b

we have JJli_{l_lx alflza)) = g(b) = ¢, that is ,,111;111( hizy) = glb) = c. By the Sequential

glh) = e

Characterization of Limits, it follows that lim hix)
T—ki

3.32 Corollary: [Composition of Continuous Functions) Let [+ A € R" — R™, let

g:BCR"™ =R andlet h=go f:CCR" — R where C = An f~1(B).

(1) If f is continuous at a € A and g is continuous at b=f{n) € B then h is continuous at a.
(2) If [ iz continuous in A and g is continuous in B then I is continuons in C'.

3.33 Definition: An elementary function is a function f: 4 € R" — R™ which
can be obtained, using the operations of addition, subtraction, multiplication, division,
and composition of functions (whenever those operations are defined) from the following
functions, which we call the basic elementary functions: and the single-variable, real-

Al e e, sin, cosa, tanar, sin” . eos L a and tan~ ! a and

valued Minetion !

the &' inclusion map I : R — R’ given by I.(t) = (0.-+-.0,,0,---,0) = f e, and the
k™M projection map P : RY — R given by Py(wq, - -, x¢) = 2.

finitely many operations
3.34 Corollary: Elementary functions are continuous in their domains.

o . x? —2° . iy . ay?
3.35 Exercise: Show that lim ————, 1 ———— and im
{23 )—+{0,0) 2+ W ()= (00} 25 4 yz (i) —+(0,0) 1% + y"
. . 32y .
do not exist, and that limn J—J =0 and lim =
(ea)—(00) 22 + 292 () —+(0,0)

. x2-2y?
If limy )~ (0,0 v

(xy)=(0,)

limit=-2

exists, (x, y) =(t,0) lirthit = 1

Used as a definition in more abstract space
3.36 Theorem: ({Topological Characterization of Continuity) Let A C R", let B C R™,
and let f: A — B.
(1) f is continuous if and only if f~(E) is open in A for every open set E in .
(2) f is continuous if and only if f~1(F) is closed In A for every closed set F' in B.

Do matter Don't matter

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Suppose that f
is continuous. Let E be an open set in B. Let @ € f~1(E) so we have f(a) € E. Since
fla) € E and F is open in B we can choose € > 0 so that Bg{f(rrj.r) C FE. Since f is
continuous at a we can choose 8 > O so that forallz € A, |z —a| < §d = |f{r] —_f{n}| < £,
Let = € Ba(a,d), that is let » € A with |z —a| < 4. Since @ € A and [ : A = B we
have f(x) € B. Since z € A with |z —a| < 4, we have and |f(z) — fla)] < e. Sinece
flz) € B with |f(x) = fla})] < ¢, we have f(x) € Bp(f(a).€) C E hence x € f~'(E),
Since a € Ba(a.d) was arbitrary, this shows that Bale, ) C f~YE). Thus f~YE) is

whenm =1lorm=2and R? = C
fg

andgwhenm =1lor2and g(x) # 0inA.

Note: For f:AS R" > R™and a € 4,
ifa € A’ then
f is continuous at a

o lim £() = £(@)

ifa ¢ A', then f is vacuously continuous at a.
(Isolated points?)

Proof (1): Suppose f(x) # b forany x € C \ {a}
Lete >0 o
Since lim,,,,, g(y) = ¢, we can choose §; > 0 thatforally € B

0<|y—b| <& =|g(y)—c|<e

Since lim,_,, f(a) = b, we can choose § > O such thatforallx e C = AN
1
B

71
0<lx—al<&-|fx)—b| <&
Then forany x € A with 0 < |x — a| < § we have |f(x)—b| <84.

and since 0 < |x — a| we have x £ L0
o= |f@ -bl <8
and hence, by the choice of §;

lg(Fe)) —c| <€
We proved that Ve > 0,36 > 0,Vx € C
0<lx—al<8=|g(f(x) —c|l<e
By the definition, lim,_,, g(f(x)) =c
Eg

ffR->Rg:R->R
f(x) =1forallx

Cfoify=1
!](Y)_{l ify=1
9(f(x)) =1forallx
lim f() = 1,1im g(y) = 0

Corollary: (Part 2)

Iff:ACR*>R"andg:B S R™ >R’ ,andC =ANfY(B) #@and h =

gof:C—-R¢

then (1) if f is continuous at a € C and g is continuous at b = f(a) € B then

his continuous ata

(2) If f and g are cocntinuous, then so is g.
Corollary,
All elementary functions f: A € R" - R™ are continuous.

An elementary function f: A € R" —» R™ is any function which can be

obtained from the basic elementary functions.

Is a rewording of € — § definition in terms of balls

Abstract set
Topological Space
Abstract norm

Metric Space
open in A, as required.
Suppose, on the other hand, that [~Y(E) is open in A for every open set F in B. Let
a € Aandlet ¢ = 0. The set £ = Bg(f(a),€) is open in B so the set f~1(E) is open
in A, and so we can choose § > 0 such that Bafa,d) © f~HE). Tt follows that for all
x € Bala.d) we have f(a) € E = Bg(f(a).€). Equivalently, for all » € A, if |z — a| < §
then f(x) € B with |Jr[.t) — Jr[uj| < €. hus [ is continuons at a. Sinee a € A was arbitrary,
[ is continuous (in its domain A).
3.37 Theorem: (Properties of Continuous Functions) Let # # A CR", let B C R™, and
let f: A — B be continuous.
(1) If A is connected then f{A) is connected.
(2) If A is compact then f(A) is compact.
(3) If A is compact the f is uniformly continuous on A.
(4) II' A is compact and m = 1 then f{r) attains its maximum and minimum values on A,
Extreme Value Theorem

(5) if A is compact and f is bijective and continuous then f~' is continuous,

Proof: We sketch a proof for Parts (1), (2) and (4) and leave some details, along with
the other two parts, as an exercise. To prove Part (1), suppose that f(A) is disconnected, Contrapositive.
Choose open sets I and Vin R™ which separate f(A). Since [ is continuons and 7 and
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(&) 1 A 1s compact and |1z bijective and continuons then f' Is continuous, e

Proof: We sketch a proof for Parts (1), (2) and (4) and leave some details, along with
the other two parts, as an exercise. To prove Part (1), suppose that f(A) is disconnected, Contrapositive.
Choose open sets [T and V' in R™ which separate f{A). Since [ is continuons and U7 and
V are open, it follows that f~'(U) and f~'(V) are open in A. Verify that f~'(U/) and Simply take the inverse
FHVY) separate A, so A is disconnected.
To prove Part (2), suppose that A is compact. Let § = {{..-'L. ke 1\'} be an open cover
of f{A) (with each Uk open in R"™). For each set k € K, sinee U is open in R™ and f is
continuous, it follows that f~'(U/;) is open in A, Let T = {J' '[f_-"k_‘,l||f.' € 1\'}. Verify that
T is an open cover of A (with each set f='(U,) open in A). Since A is compact, we can
choose a finite subset J © K such that the set {_,l"_l[!'.-ﬂ}“ 3 J} is an open cover of A,
Verify that the set {U,L}' € ,f} is an open cover for f{A), so f{A) is compact.
To prove Part (1), suppose that f : A € R" — R with A is compact. Since A is  (So3a € Asuchthat f(a) > f(x) forall x € 4)
compact and f is continuons, f(A) is compact by Part (2). Since f(A) is compact, it is
closed and bounded by the Heine Borel Theorem. Since f(A] is bounded and non-empty
(since A # @ in R. Let uw = sup f(A). By he
Approxdmation Property of the Supremum, for each n € we can choose x,, € A with

it_has a supremum and a

Squeeze w— < [(x,) = w and 1 follows that fla,) — wand hence u is a limit point of f{A). —

—te— - . PR ;o
or Since w15 a limit point of f(A) and f{A) is closed, we have v € f(A). Thus we can choose - U ’
Definition a £ A such that fla) = u =sup f(A) = max f{A), and then f attains its maximum value “T

at a € A. Similarly, we can choose b € A sueh that f{b) = inf f{A) = min f(A4).

b

3.38 Definition: Let A C R" and let a,b € A. A {continuous) path from a to b in A
is a continuous function f @ [0,1] — A with f(0) = a and f(1) = b. We say that A is infinite
path-connected when for every a,b € A there exists a continuous path from a to b in A

3.39 Theorem: (Path-Connectedness and Connectedness) Let A T R”. path-connected is stronger than connected

(1) If A is path-connected then A is connected. but usually easy to prove? not convex

(2) If A is open and connected then A is path-connected.

Proof: We prove Part (1) and leave Part (2) as an exercise. Suppose that A is path

connected and suppose, for a contradiction, that A is not connected. Let U and V' be open Say A is convex when for all a, b € A
sets in B™ which separate A, that s UNA A O, VNnA#£ 0, UNV =land ACTUV. the line segment [a, b] € A
Choose a € Un A and b e VA, Since A is path connected we can choose a continnons where [a,b] = {a + t(b — a)|0 < t < 1}
path f: [0,1] — A with f{0) = a and f(1} = b Since f is continnous, f~'(U7) and

f7HV) are open in [0,1]. Sinee f(0) = a € U we have 0 € f~1(U) so [~1U) # 0.

Similarly 1€ f=4(V) so f=4V) # 0. Since UNV =@ we also have f~H{U) N f~HV) =0

(indeed if we had ¢ € f~1(I7) V) then we would have f(t) € U/ and f(t) € V so

that f(t) € U V). Since f:[0,1] = A C U UV it follows that [0,1] = f=HU)U f~1(V)

(indeed, given f € [0,1] we have f(t) € A C U7 UV, soeither f(t) € I or f{1) € V hence

either t € f~'(U) or t € f~'(V)). Thus the open sets f~"(U) and f~'(V') separate [0, 1].

This is not possible since [0, 1] is connected, so we have obtained the desired contradiction.

3.40 Exercise: Show that the set U = {{x,y) € R*|y > 2%} is open in R%

3.41 Exercise: Show that for ¢ € R" and » = 0, the set B{a,r) is connected.

We show that is convex, hence path-connected, hence connected.

Solution:
Letb,c € B(a,7)
Leta(t) =b+t(c—b)=A—-t)b+tc for0<t<1
For0 <t <1, we have
la@®) —al=Ib+tlc—b)—al=|b—a)+t((c—a) - (b—a)|
=1 -8)b—a)+tlc—a)l
< (1 —-1t)|b—al + tlc — al By Triangle Inequality,since0 <t <1
subtlety S(1—-0Or+¢-r
here =r

[b—al

Sowe have a(t) € B(a,r) forall0 <t < 1.

eg LetA = {(x,y) € R*|y < x?}
Show that 4 is open and connected.

Solution:

Let f: R? > Rbe givenby f(x,y) =y — x?
Then 4 = {(x,y)|f (x.y) < 0} = f (=<, 0)) y=x
A is open because f is continuous (its elementary) and (—oo, 0) is open.

Since not convex, not easy to do a path-connected.

Given (a,b) € A,sob < a?,

the map 20
a(t) = (a,b) + t((a, -1) —(a, b)) 9

= (a,b) +t(0,—1—b)

=(a,(1-=tb-1)

20

10 10
is continuous with a(0) = (a, b)

and (1) = (a,—1).

and for (x,y) = (@, (1 —t)b —t) with0 < t < 1.

Wehavey =b—t(b+1) < b < a? = x? 0
Sothat (x,y) = a(t) € A

hence a is a continuous path from (a, b) to (a, —1) in A.

Verify that

O = (.~ +t((e,~1) - (a,~1)

=(a,-1)+ t((c —a), O)
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=(a+t(c—a),-1)
is a continuous path from (a, —1) to (¢, —1)

Also, as above, we have a continuous path from (c,d) € Ato (c,—1) € A

Since there is a path in A from (a, b) to (a,—1) and ....
(a,-1) - (c,-1)
(c,d) = (c,-1)

1t follows from your homework that there is a path from (a, b) to (¢, d) in A.

Thus, A is path-connected, hence connected.

eg. For each of the following functions g(x,y), find lim(y,yy-(0,0) g(x,y), ifitexists. g: R? \ {(0,0)} -

R
3x2y2
T x4+ 2y2

3x |y|

lg(x,y)-0| < =3ly|-0

Indeed, given € > 0
Choose 6§ = 5, then for

|(x y)—(00)|<5
:‘/x2+y <6——
>yl =7 < T FyE <
= |g(xy) - 0| <3ly| <e
Hence lim(y )00y 9(x,¥) = 0
Xy

N
0
laCxy) - |f2+y NeaslE

Note: 2|xy| < x* + y?

. xy
Thus, limy )~ (0,0 N
Indeed given € > 0, choose § = 2¢€
then for (x,y) with |(x,y) — (0,0)| < § = 2¢
We have \[x% + y? < 2¢

_ N )
Hence|g(x,y) = 0| <5J/x* +y2 <e.
x% —2y?
_xZTyz_
Define a: R - R?
ifweleta(t) = (t,0)
then iflim(y y)0,0) (%, ¥) = u € R U {0}
Then by the Limits and Composites Theorem

(Xy) m, 0)(x y) = llmg(a(t)) =lim1=1
But if we define §: R — IRZ by
B(t) = (0,¢t) then
2t2

g(xy) = llmg(ﬁ(t)) =lim—— = -2

e y)ﬂ(o 0) =

Thus DNE
Xy
Wy
Define a: R = R? by a(t) = (t,0)
and B: R - R? by B(t) = (¢,t)
Then if lim(y ) 0,0y 9(x,y) = u then
u=20

and v = lim,o g(B()) = %
So the limit cannot exist
xy?
X2y y4'
For fixed y # 0 and h(x) =
Soh'/(x) =0e x2=y*
o x =+y?

h(x) =

2+ > we have h'(x) =

y 1
=+=
t 2y T2
For a: R » R? given by (a)(t) = (0,t)
and B: R - R? given by B(t) = (t%,t)

iflim(y,yy-(0,0) g(x, y) =u
then we must have

u= ‘l,ij%g(“(t)) =0
and u = lim;_ g(B(6)) = %

Then the limit does not exist.

Sketch z = ——andz =

Y
xZ+y?

z+y4
Solution: We use polar coordinate,

x=rcosf,y=rsinf.
x; . 1.
Thus, z :_2y_2: cos @ sin 6 = =sin 26
x24y 2

X 1
24 = —rsin26

REE
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|xy] 2( y)_:_ T

Alternatively,
Sequential Characterization

Letx, = (% 0) so x, — (0,0)

and lety, = (0, %) soy, — (0,0)
So by the Sequential Characterization of Limits

y2 Pyt Zx _yot -Xz)

(r*+a2)’
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chap4

Chapter 4. Introduction to Derivatives

4.1 Definition: Let 7 € R™ be open in R, let [ 0 C R™ — R, and let at a & U, say

a=(ap.- -, m,). We define the k' partial derivative of f at a to be
%l“} _.I‘L-J{"l )y where gy (t) = flag, - - me_g foaggy, - a) Pretend other variables are constant

or equivalently,

—jL(rf) = "(0) , where hp(f) = flap. - opoy a0 iep . ag)

—2xe¥ ™ \/m e
\/_

2xy

Axy
provided that the ¢ tives exist. Note that g and by are functions of a single variable, ey-x2
Sometimes ,L;J:E is written as f,, or as f. When we write u = f{x), we can also write Eg For f(x,y) = Ty
% as :,JT" y, oF up. When n = 3 and we write 2, y and z instead of xy, xs and =y, the we have
partial derivatives F}L m‘& and —-L are written as ;,{ 5{ aned —{- or as fp. [, and f.. F)
When n = 1 50 there s only one \Hl]}ll)l&‘ =y we have 2f Fela) = LJL[aJ = f'la). E(""’)

4.2 Note: To caleulate the partial derivative ‘—IL(J} wr can treat the variables o; with f( )
i # & as constantz, and differentinte § as if it were a funetion of the single variable . a_y oy
4.3 Exercise: Let flr,y) = #%y + 2zy®. Find 2£(1,2) and £

i

a(1,2).

eJh

4.4 Exercise: Let [(w,y,2) = ( — 2%) sin{=%y + 2). Find 5L (2, g, 2) and 2L(3, 505

ik
5 Definition: Let 7 € R™ be open in B.". let f:00C R" — R and let a  [7,

Write u = flz) = (filz), falz).- - fulr)) with & = (.22 r,)7. We define the
derivative matrix, or the Jacobian matrix, of f at a to be the matrix

Shia) Hhfa) - H(a)
Df{a) = 3'7“'} Sl - :.’.’-m
‘..‘Jr‘.?_,'(u) iv’,_l'rf—:l:lfra) ::‘if.-L,',:{"]

and we define the linearization of [ at o to be the afline map L R™ = R™ given hy

Lla) = fla)+ Dfta)z=a) e gnq € RY, £(a) € R™, D (@) € Myen(R)

provided that all the partial derivatives 2t i) exist,

g

ay that f s C'in
1 second order

4.6 Definition: Let 7 be open in R™ and let f 207 CR" — R™. Wi
U when all the partial derivatives "JUT
partial derivatives of f are the functions

ary, gk
Gucdtry Dy

exist and are continons in 0.

A, i Lo . P
We also write T*‘y = m_—‘r‘— We say that f is €% when all the partial derivatives
exist and are contimons

L Vi
: W ! T Ty i
- Higher order derivatives can be defined similarly, and we

ry
say [ is CF when all the K'Y order derivatives ij'ﬂT exist and are continwous in £,
e
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x=f(t)
x=L(t)

=f()
y=L(x)
fx)=k
L(x) =k

4.7 Deﬁnit_ion: Let @ € U7 where U7 is an open set in R, and let f: I/ T R — R™, say
x=fit) = (wy{t),aa(t), - (). Then we write f'(a} = Df(a) and we have

%l[(aj ay'{a)
f'la) = Dfla) = : = :
82u () Tl

The vector f'(a) is called the tangent vector to the curve = = f{f) at the point f{a). In
the case that t represents time and f{t) represents the position of a moving point, f'(a) is
also called the veloeity of the moving point at time § = a.

4.8 Definition: Let o € I7 where [7 s an open set in R" and let /07 C R* — R, We
define the gradient of [ at a to be the vector
. (#
Vfa) = Df{a)” = ( I . df m]) -
3'.’ (@)
4.9 Definition: Let 7 € R” be open in R7, let [ 00 C R < R™, and let a2 U We
=ay that f is differentiable at @ when there exists an affine map L : R" — R" such that

We=0 33:=0 V.r":[a'(|.i' —a| €8 = |flz) — L(z)| < elr - u|).
We say that [ is differentiable in {7 when f is differentiable at every point @ € 7,

4.10 Theorem: Let I C R™ be open, let f: U7 C R — R™ and let o = U7, Then
(1) IF [ is differentiable at o then the partial derivatives of f at a all e
map L which appears in the definition of the derivative is the linearization of f at a.
(2) If f is differentiable in U then [ is continuous in U7,
(31 If f is C" in UV then f is differentiable in [T,

e 5,
() I is O in U then 57 i = _,:_ for all j, k. 0.

Proof: The proof will be given in the next chapter,

ist. and the alfine

4.11 Note: Let a € I7 where U is open in R™ and let f: 7 C R" — R™ be differentiable
at a. The definition of the derivative, together with Part (1) of the above theorem, imply
that the lunction [ is approximated by its linearization near @ = a, that is when » = o we
have

FlE = BiE) = i) + Df{a){x —a).

The geometric objects (curves and surfaces ete) Graph (), Null(f), f71k) and Range([)
are all approximated by the affine spaces Graph (L), Null (L}, L~"(k) and Range(L). Each
of these affine spaces is cnll('cl t]lc' (affine] tangent space of its Lomnpun(lmg geometric
object: the space affine) tan, af
1 i= called the {n[fl]u} tangent n]mt‘n

l[.‘-] is (elllt.!d the i at the point e; and Iho space
e (alfine) tangent space ul the set Rangel [TAC THe point Then

1= mnensional wee call it a tangent line and when a tangent n]:,u-o is
2- (1!]t]l.l].‘al(]]l.l] we call it a tangent plane.

«pa( e L

Derivative 2

The dimension of the graph y = f(x) at the point (a,f(a)) is the dimension of the
graph y = L(x). (namely n). The dimension of the level set f'(x) = k at the point a
is the dimension of the level set L(x) = k. (Namely dim Null Df (a) = nullity Df (a)).
The dimension of the image X = f(t) at the point f(a) is the dimension of the image
X = L(t). (namely dim Col Df (a) = rank Df (a)).

4.12 Exercise: Find an explicit, an implicit and a parametric equation for the tangent
line to the curve in R? which is defined explicitly by the equation y = f{x), implicitly by
the equation glz, y) = k, and parametrically by the equation (r,y) = oft) = (x(1). yit)).

4.13 Exercise: Find an explicit, an implicit, and a parametric equation for the fan-
gent line to the curve in R® which is defined explicitly by (#,y) = f(z) = (.J'(:'}.y[z]).
implicitly by ulx,y.2) = k and v(z, g 2) = 1. and parametrically by (r,y,2) = alf} =

() ule), 2(2)).

4.14 Exercise: Find an explicit, an implicit and a parametric equation for the tan-
gent plane to the surface in R* which is defined explicitly by = = f(z,y). implicitly by
alr gz} = koand parametrically by (e, 2) = o(s.0) = (.a'[.x..f). uls, f).z[.\'..f)).

4.15 Exercise: Find a parametric equation for the tangent line 1o the helix given by
(.. 2) = (Zeost, 2sind, t) at the point where £ = £, and find the point where this tangent
line crosses the xz-plane,

b2ay

4.16 Exercise: Find an explicit equation for the tangent plane to the surface =

Ty

at the point (2, —1).

4.17 Exercise: Find an implicit equation for the tangent line to the curve given by
2+ 22 + In(y — 2*) = 6 at the point (2,5).

4.18 Exercise: Find a parametric equation for the tangent line to the curve of intersection
of the paraboloid z = 2 — x? — 3 with the cone y = V22 4 2% at the point p = (1,1,0).

4.19 Exercise: Find an explicit equation for the tangent plane to the surface given by

(ar g, 2) = (reost, rsint, o) at the point where (r, £} = (v2, ).

4,20 Theorem: (The Chain Rule) Let f: U7 € R* = V < R™, Jet g: V C R™ — R,

anid let hix) = gl flo)). IF f s differentiable at a and g is differentiable at fa) then b s

differentiable at a and Dhia) = Dgi fla))Df(a).
Proof: A proof will be given in the next chapter.

= flry) = 4
inel D26(2.1).

4.21 Exercise: Lot
hia.y) = g(fx.y))- F
4.22 Exercise: Let (x,y) = f(r.#) = (reos#, rsin#), let z = glz, y) and let z = h(r,§) =
gl flr @), 1 hir, @) = #2598 then find Wg(+3, 1),

B

4.23 Exercise: Let (g 2] = f{s.0) and (w.v) = glr,y, 2}, Find a lormula for 27

— Bry + 5%, (wov) = giz) = (VE=1,5Inz) and
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Lhe point (. Flal): when f[rr}_[] the space N g +) tangent space
of Null ( f) at the point a, .md more "(‘Il(‘l‘\]l\ when fla) = k, so that a £ f~'(k), ¢ he
1

Derivative matrix -> affine map

Graph of affine map is affine space.

Im € R.
True with equal sign stuck in

Linearization
The function f(x) = f(a) + f'(a)(x — a) is the linearization of f at a.

Tells that when x ~ a, we have f(x) = (x).

Definition: For a function f: U € R" - R™ with U open in R", and for a € U, we
say that f is differentiable at a € U when 34 € My (R)

Ve >0,36 >0,vx €U

lx—al <8 = |f(x) - (f@) + A(x — @))| < €lx —al

Facts,

When f is differentiable at a, the matrix A is unique.

Indeed-th tial-deri it af—’t/\ll jsts d-A-isth
-Ehe-pi Py

Ak

If the partial derivative (x) exists and are continuous at a. Thus f is

differnetiable of a.

Special Case:
When f:U € R! > R™
and we write (xy, Xz, ..., %) = f(t) = (x(1), ..

and we have

f'(a) = Df(a)

Tangent vector

Special Case 2:
For f:U € R" - R*

gradient.

eg. For f:U € R? > Rwritingz = f(x,y)
we have Df (a,) = (L (a.0), Z (a.5))

Lxy) = f@b) +Df@b) (5 )

a, a,
=f(a,b)+£(a,b)(x—a)+£(a,b)(y—b)

eg. For f:U C R! > R®
writing (x, y, z)T =f(t)= (X(t).y(t).l(f))T
we have Df (a) = f'(a) = (X'(a).y'(ﬂ)'l'(a))T

(xy.2) = L) = f(@) + f'(@)(t - a)
Alternatively, by (x, y,z) =f(a) + f'(@t



v
e

3 parametric / implicit representation not unique.

eg.For f:U S R® > R!
writtenas u = f(x,y,2)

we have
_(of of of _ "
Df(a,b,c) = (ax (a,b, c).ay (a,b,0), = (a,b,¢) | = Vf(ab,c)
xX—a
4.24 Definition: Let a € U7 where U7 is an open set in R", let f: 7 € R" — R he f(a,b,c) +Df(a,b,c) (y *b> =k
differentiable at a, and let v & R". We define the directional derivative of f at a x—a z=c
with respect to v, written as 1, fla). as follows: pick any dilferentiable curve af ) with Df(abc)[y—b)=0
o) = a and o'(0) = v (for example, we could pick a(t) = a + vt). and define D, fla) Z—c
to be the rate of change of the function f at + = 0 as we move along the curve a. To he The tangent plane has equation
precize, let 3(¢) = f{ait)), note that 3'(t) = Df (ait))a’(t), and then define 12, f(a) to be %(a b,c)(x — a) +0_f(a b,c)(y—b) +E(a bc)(z—c)=0
7% (@b 3y @b 32 (@b
Dy fia) = ({0
= Df (el 0)) 0" (0) normal vectoris Vf(a, b, c)
= Dfia)w
=Vfla)-v.

Notice that the formula for D, () does not depend on the choice of the eneve wft). The
(directional | derivative of [ in the direction of v is defined to be the D, fla) where

w is the unit vector in the direction of v, that is w = |+[

4.25 Exercise: Let flr,y,z) = wsin(y? — 2rz) and let at) = (v, 36, "0 Find
the rate of change of [ as we move along the curve o) when £ = 4.

4.26 Theorem: Lei f: 0 C R" — R be differentiable at o & U, Say fla) = b The
gradient Vf{a) is perpendicular to the level set [x) = b, it is in the direction in which [
increases most rapidly, and its length is the rate of increase of f in that direction,

Proof: The proof will be given in the next chapter.

4.27 Note: Let o € U7 where U is an open set in R™, and let f: U C R® — R™ be
differentiable, The k™ column vector of the derivative matrix Df{a) is the vector

T
( ar g i, & fm
fula) = 2 (a) = (5—%[”}.- %[rr]) ER™,
which s the tangent vector to the eurve 3u(t) = flog(#)) at £ = 0, where ag is the eurve
through @ in the direction of the standard basis vector ep given by ag(i) = a + feg.

The " column vector of the derivative matrix Df{a) is the vector

. T
Vfela) = (‘—J&[rr}. S %{u])

iry

which s orthogonal to the level set f;(0) = fi(a), and points in the direction in which Jr
increases most rapidly, and its length is the rate of increaze of fy in that direction.

Find the tangent line at (1,1,0) to the curve of intersection of z = 2 — x? — y2 andy = VxZ ¥ 22
(equivalently, y? = x2 + 2%,y = 0)
For g:R? —» R?
u 2 +yt-z
(1;) =g(xy.2)= (

x?—y*+4272

The curve is the level set

(o) = 96er2) = ()

We have g(1,1,0) = (g) 4
o ou ou
ax oy @

and Dg(x,y,z) = - = ai ai az
ox 9y oz

o= % )

e =)

x—1
9(1,1,0) + Dg(1,1,0) <y - 1> -
z—0

That is
2(x—1)+2(y—1)+z=()
2-1)-2(y—-1)=0

or X 2 3
242y +z=4 egForf:U S R* » R
x—y=0

x(s,t)
writing (x, v z)T =f(s,t) =| y(s,t)
z(s,t)

A o
o, r>

Continue at chap4_new

0x ox

s (a,b) 3t (a,b)
i@ =|Zan Zan

0z 0z

3s (a,b) 3t (a,b)

= (f:(a,b), f(a, b))
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Rows are gradient

eg. Find a parametric equation for the tangent line at (1,1,0) to the curve of intersection of two
surfaces (paraboloid) z = 2 — x? — y? and the cone y? = x? + z?
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Chapter 4. Introduction to Derivatives

4.1 Definition: Let I’ € R"™ be open in R", let [: 7 C R"™ — R, and let at a € U, say
a=(ay, -, a,). We define the k' partial derivative of f at a to be
%(ﬂ) = gi'(ag) . where gy (t) = flar, - ap_1, taggr, - - an),

or equivalently,

A (a) = hi'(0) , where hy(t) = flay, -+ a1 ap +faggn, o an),
provided that the derivatives exist. Note that g and hy, are functions of a single variable.

3 1 & 1 1 2 0 e T 2 TE e = . T ale T1He
Sometimes F;E is written as f, or as fr.. When we write w = f{z), we can also write

g;% as 5’;: g, OF ug. When n = 3 and we write x, y and z instead of @y, rz and x3, the

" o af @ ar . caf @ ar )
partial derivatives Farr D_z‘% and m‘r—. are written as 57, 3{; and 3L, or as fi, f, and f..

When n = 1 so there is only one variable x = &, we have %{a) = %(u} = f'{a).

4.2 Example: Let f{x,y) = 2°y + 2oy®. Find %[LJ} and %(1,2}.

Solution: Let gi(t) = f(t,2) = 2t° 4 8t. Then g} (t) = 6t* + 8 50 §L(1,2) = g'(1) = 14. Let
ga(t) = f(1,1) = +2¢%. Then gh(t) = 1 + 4t so IL(1,2) = g4(2) = 9.

iy

4.3 Note: Rather than explicitly determining the functions gg(f) as we did in the above
solution, we can calculate the partial derivative f&{a) by simply treating the variables x;
with i # k as constants, and differentiating f as if it were a function of the single variable
T
4.4 Example: Let f(x,y,2) = (x — 2%)sin(a2y + ). Find 2 (x,y. 2) and 203, 7,0).
Solution: Treating y and z as constants, we obtain

8.y, 2) = sin(x®y + 2) + (z — 2%) cos(x?y + 2)(2xy)

and so %{(3, 5.0) = sin ']7" b 3 cos 9,7"(3?T) =1
4.5 Definition: Let 7 C R" be open in R", let [ : U7 € R" — R™ and let a £ U7,
Write u = flx) = (_ﬂ (), falz), -+ .J"m(:r))T with @ = (@y,09,--,x,)7. We define the
derivative matrix, or the Jacobian matrix, of f at a to be the matrix

<"In[a) r".h(a], f".ﬂ(a}

iy g i,

) Gi(a) o glta)
Df{a) — d.r-|l dra d.r.,.l

%‘j“—;'(n} %’%[u) ces f—‘}%(n]

and we define the linearization of [ at o to be the affine map L : R® — R"™ given by
Liz) = fla) + Df(a)(x — a)

provided that all the partial derivatives %{%(a} exist,
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4.6 Definition: Let {7 be open in R™ and let f: U/ € R" —+ R™. We say that fis C' in
L7 when all the partial derivatives %% exist and are continnous in 7. The second order
partial derivatives of [ are the functions
o af,
a9t
iy dhay .

r LD & . N . . . @ f,
‘o also wr fi &0 fo g 02 - G uatives i
“? also write 524 * = il W e say that f is C “Ihcn all the pm]:lal dt:‘m‘amc:, BT
exist and are continuons in . Higher order derivatives can be defined similarly, and we

. 3 ik i . s s
say f is C* when all the k™" order derivatives e e e (.;r_f gy exist and are continnous in U,
i) Oy B,

4.7 Definition: Let a € U7 where [7 is an open set in R, and let f: 7 € R — R™, say
= f(t) = (x1(t), x2(t), -, 2m(t)). Then we write f'(a) = Df(a) and we have

%L(n.} xy'(a)
f'la) = Df{a) = = :
%u(l’f} l‘m((a)

The vector f'(a) is called the tangent vector to the curve » = f(t) at the point f(a). In
the case that f represents time and f(t) represents the position of a moving point, f'(a) is
also called the veloeity of the moving point at time t = a.

4.8 Definition: Let o € I7 where [7 is an open set in R" and let f: 7 C R" — R. We
define the gradient of f at a to be the vector

( af af )T ;Ifl «

Vila) = Df(a)" = (5 -(a).-. o—(a)) =|

drq iy, e
%[ﬂ]

4.9 Definition: Let U7 C R™ be open in R™, let f: U C R® — R™, and let a € U. We
say that [ is differentiable at a when there exists an affine map L : R® — R" such that

We=03d=>0 Ve U(|rr.' —a|l <6 = |flz)— Lz)| < ¢lz - u|) .
We say that fis differentiable in U7 when f is differentiable at every point a € U,

4.10 Theorem: Let U C R" be open, let f: U CR" —+ R™ and let a ¢ U, Then
(1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine
map L which appears in the definition of the derivative is the linearization of [ af .
{2) If f is differentiable in U then f is continuous in U7,
(3)If f is C* in U then [ is differentiable in U.
- a% a2y, .
(4) If fis €2 in U then 5ot = ;A for all j k(.

Prool: The proof will be given in the next chapter.
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4.11 Note: Let a ¢ I/ where [V is open in R™ and let f: I/ € R" —+ R™ be differentiable
at a. The definition of the derivative, together with Part (1) of the above theorem, imply
that the function f is approximated by its linearization near x = a, that is when = = a we
have
fla) = Lix) = fla) + Df(a)(x —a).

The geometric objects (curves and surfaces ete) Graph (f), Null (f), f~'(k) and Range( f)
are all approximated by the affine spaces Graph (L), Null (L), L= (k) and Range(L). Each
of these affine spaces is called the (affine) tangent space of its corresponding geometric
ohject: the space Graph (L) is called the (affine] tangent space of the set Graph (f) at
the point (a, f(a)); when f(a) =0, the space Null (L) is called the (affine) tangent space
of Null (f) at the point a, and more generally when fla) = k&, so that a € f~'(k), the
space L~ 1(k) is called the (affine) tangent space to f (k) at the point a; and the space
Range(L) is called the (affine) tangent space of the set Range( f) at the point fla). When
a tangent space is l-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.

4.12 Example: Find an explicit, an implicit and a parametric equation for the tangent
line to the curve in R* which is defined explicitly by the equation y = f(z), implicitly by
the equation g(x,y) = k, and parametrically by the equation (i, y) = o(t) = (x(t).y(t)).
Solution: The curve in R? defined explicitly by = f(x) has a tangent line at the point
{a, fla)) which is given explicitly by y = L{x), that is

y = fla)+ fla)(z - a).

When gla,b) = k, the curve in R? defined implicitly by the equation g(x,y) = k has a
tangent line at the point (a,b) which is given implicitly by the equation L{x,y) = k., that
is by fla,b) + {g{a.b), %ﬁ(u,b])(:ﬁ —a,y — b7 =k, or equivalently by

W, b)(x — a) + 2 {a, b)(y — b) = 0.

[EF iy
The curve in R? defined parametrically by (x,y) = a(t) = (x(t). y(t)) or, more accurately,

by (2,97 = alt) = (J:{f],y{t))T has a tangent line at the point ofa) = (I{u),y(u])T
which is given parametrically by (x,y)7 = L(t) = ala) + o'(a)(t — a), that is

(5)= G+ (Vi) e

4.13 Example: Find an explicit, an implicit, and a parametric equation for the tan-
gent line to the curve in R which is defined explicitly by (a,y) = f(z) = (x(z).y(z)).
implicitly by w{x,y, 2] = k and v{z,y, z) = I, and parametrically by (z, 9, 2) = oft) =
(w(t)y(t). =(1)).

Solution: The curve in R* given explicitly by (x.y) = f(z) = (x(z),y(z}) or, more accu-
rately, by (x.1)" = f(z) = (:;(z].y{z])r. has a tangent plane at the point (z(e), y(e), e)
which is given explicitly by (@, 4)7 = L(z) = f(e) + Df(c)(z — ¢), that is by

£ xle) .'z:'{('}) ) .

= + , —

(y) (y[e}) (y(c) (-0
When w(a, b, c) = k and via,b,c) = ¢ and we write glx, y, 2) = {u(:c_.y_.z),_l-‘(:c_.y.z)}w, the
curve in RY given implicitly by g{x,y, 2} = (k. £)Y. has a tangent line at {a.b.¢) given

3
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implicitly by L{z,y, z) = (k. ()7, that is b g(a. b, ¢) + Dy(a. b, ¢} (2—a, y—b. :.—(:]T = (k7.
or equivalently by

%(n,_ b,e) '.;1_::[&[’""} ;‘}—‘;{a.h,_ ) & :‘; _ (0
%(u,b, ) g—:{ﬂ:b: c) ?)—:(fr,b, ) g—r:

The eurve in R* given parametrically by (z,,2)7 = ala) = {:zr[a :y(a},z(a}]T has a

tangent line at a(a) which is given parametrically by (r, y, 2)7 = L(f) = ala)+a'(a)(t—a).

that is
T xfa) a'fa)
y | =1 wula) |+ | ¢la) |(f—a)
z z(a) 2'(a)

4.14 Example: Find an explicit, an implicit and a parametric equation for the tan-
gent plane to the surface in R? which is defined explicitly by =z = f(x.y). implicitly by
glx,y, z) = k, and parametrically by (g, 2) = o(s.t) = (x(s,t).y(s. ), 2(s.1]).
Solution: The surface in R* given explicitly by = = f{.y) has a tangent plane at the
point ig(a, b, f{a,b)) given eplicitly by = L{z, y) = fla.b} + Uf(a,b}(x—a.y—bJT. that
is

z= fla,b) + %;[,(u,_ bijfx —a)+ %{a. By — b).
When gla, b, ¢) = k, the surface in R* given implicitly by gz, 3. 2) = k has tangent plane at
{a, b, €) given implicitly by L{z,y, z) = k, that is g(a, b, ¢) + Dgla, b, e) (z—a, y—b, z—-t“.}I =k
or equivalenty

;—:i(fr., boe)(x —a)+ Qﬂ[u, by —b) + :—j%(n,_ be)(z—e) =10

b,

m By
The surface in R? defined parametrically by (z,y. 2) = a(s,1) = (x(s.t),y(s,t). (s, 1)) or,
more accurately, by (r,y, 2)7 = o(s,6) = [:r(s,t).y(s,t},z(s,t}]‘r has a tangent plane at

a{a,b) which is given parametrically by (x.y. 2)7 = L{s.t) = U(a.b)+Ua(a,b)(5—a.t—b)T.
that is

.':; wfa,h) %(a.b) %{ﬂ.b}

Dy ¢ 5, s—a
y | = y(a,b_} | FElab)  Fla.b) (t— b) .
z zla,b) %{u,b} g—f(u,b]

4.15 Example: Find a parametric equation for the tangent line to the helix given by
(i, 4, 2) = (2eost, 2sint, t) at the point where t = %, and find the point where this tangent
line crosses the xz-plane.

Solution: Let f(t) = (2cost, 2sint,t) and note that f'(f) = ( — 2sint, 2cost, ]}. We have
f(lg) = {l, V3, I‘} and f'{ﬂ‘) = (3.1, 1) and so the tangent line at the point f(l‘) is
given parametrically by (z,y.2) = L(1) = (1,v3,Z) + ( = v3. 1.1} (t — Z). The point of
intersection with the rz-plane occurs when y = 0, that is when V3t+t— 1‘ =0, so0 we take

t =% 3 toobtain (x,y,2) = L(§ —v3) = (Lv3,§) —v3( - v3,1.1) = (4,0, V3.
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. . ) ‘
4.16 Example: Find an explicit equation for the tangent plane to the surface z =

at the point (2, —1).

2y

Solution: Let fla, y) = ° " Then

u

e g g

B
;,_{-(-‘-L‘) = NeE=T

o 20 (22T Tg =
a_.,("--ff] = Tty

s0 we have f(2,—1) = 1, and %{[? —1) =2 and :—;'5(2 —1) = % Thus the equation to the
tangent plane is = = 1+ 2(x — 2) + El'i,r + 1), or equivalently 4 + Ty — 2z = —1.

4.17 Example: Find an implicit equation for the tangent line to the curve given by
24y + 2% + In(y — %) = 6 at the point (2,5).

Solution: Let g, y) = '7\_/{; + a2 +In(y — #2) and note that g(2,5) = 29 +1In1 = 6. We

ave 29[ — @, dg¢.. —_ 1 1. e B g _ 4 8
have 52 (x, y) = oS m “ and j:f(l )= W——ﬁ so that 52(2,5) = 5 — -3
and gﬁ[?.!’:} =1+1= —: 50 the tangent line at (2,5) is given by —5{z—2)+ 3(y—5) =0

or, equivalently, by 2(x —2) = (y—5) or hy y = 2z + 1.

4.18 Example: Find a parametric equation for the tangent line to the curve of intersection
of the paraboloid z = 2 — 22 — 4% with the cone y = /22 + 22 at the point p = (1,1.0).

Solution: Note that the paraboloid is given by % + 3* 4+ z = 2 and the cone is given by
2 — %+ 27 =0, with y = 0. Let u(x,y,2) = 2> + ¢ + 2 and v(a, y, 2) = 2% —y* + 2% and
let gl y, z) = (ulr.y,z),v(x.y, z)) so that the curve of intersection is given implicitly

by glr.y, z) = (2,007, Note that g(1,1,0) = (2,0)7 and
Bu  du Pu
i v 2y 1
Dgl.y.2) = (,-i.- i 5;.“-) = ( .o )
Bvogu B 2w -2y 2
2 2 1
Dg(1,1,0) = (2 9 ”)

The tangent line at (1,1,0) is given implicitly by Dg(1, ],[J){.J'—l\y—], :}T = (0,07 that

is

2 2 1) [T : (0

2 =2 0)|Y 7] ho
This is equivalent to the pair of equations 2(x—1)4+2(y—1)4+z = Oand 2{z—1)-2(y—-1) = 0.
We remark that these are the equations of the tangent planes to the two given surfaces at
(1,1,0). The two equations are equivalent to 2x + 2y 4z =dand r —y =0. We let y =1,
then the second equation gives @ = 3 = ¢, and the first equation gives z =4 — 20 — 2y =
4 — 4t, so the line is given parametrically by (@, y, z) = (0,0,4) 4+ #(1,1, —4).

4.19 Exercise: Find an explicit equation for the tangent plane to the surface given by
(w,y,2) = (reost, rsint, 2s) at the point where (r.t) = (v2,%).

4.20 Theorem: (The Chain Rule) Let f: U CR" =+ V C R™, let g: V C R™ — R/,
and let hiz) = g(flx)). If f is differentiable at a and g is differentiable at fla) then h is
differentiable at a and Dhia) = Dg(f(a))Df(a).

Proof: A proofl will be given in the next chapter.

4.21 Exercise: Let z = fla,y) = 42® — Sy + 57, (u,v) = g(2) = {\fz —1,5In :} and
Rz, y) = g(f(x,y)). Find Dh(2,1).

4.22 Exercise: Let (x,y) = f(r,8) = (rcos@, vsind), let = = gz, y) and let z = hir,0) =
g(f(r8)). I hir,8) = r2e¥3F) then find Vg(+/3,1).
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Alternate presentation
The paraboloid is given by z = 2 — x2 — y?

Take the tangent space (plane) first and linear algebra

y= \/F + 22

The tangent plane to the cone y = /(x? + z?2) at the point (x, v, z) =(1,1,0)
(that is when (x, z) = (1,0)) ...

Solveitgetx =y

Take the normal vector.
So itis in the direction of

2 1 1
w=uxv=|(2]|x|-1]|=|1
1 0 4

Thus, the tangent line (which goes through (1,1,0)7) is given by
X 1 1

(y) =l1|+¢t| 1
z 0 -4

Different version. Parameter shifted.

Alternate Solution / (Not recommended)
Substitute we get

2x2+z2+2=2
Complete the square

2
2x? + Z+l =2
2 4

2
2 (z+%)
+——"—=1

=

ol o
NG

The curve of intersection is given parametrically by

3
X =—=cost
22
= 1+3 int
zZ= 2 25111

andy = Vx? + 22

It is the image

(,7.2) =a®) = (s )

Find s such that a(s) = (1,1,0)

Then calculate a’(s)

Then the equation is the tangent line is given by (x,y,z) = a(s) + a'(s) - t

(or by)
ey z)=a@) +a' ()t —s)

Explanation:

Forx ~a,andy = f(x) = f(a) = b

fGx) = f(a) + Df(a)(x —a)

h(x) = g(f(®)) = g(y) =~ g(b) + Dg(b)(v — b)
=g(f(@) + Dg(f(@)(f(x) - f(@))

~ h(a) + Dh(f (@))Df (a)(x — a)

Verify these approximate do fall in the interval



4.26 Theorem: Let f: U7 C R" — R be differentiable at a € U,
wm) gradient Vf(a) is perpendicular to the level set f{x) = b, it is in the di

Proof:
When

Rz, y) = g(f(x,y)). Find Dh(2,1).
4.22 Exercise: Let (x,y) = f(r,8) = (rcos@, vsind), let = = gz, y) and let z = hir,0) =
g(f(r8)). I hir,8) = r2e¥3F) then find Vg(+/3,1).

i
it

4.24 Definition: Let o € [7 where 7 is an open set in R”, let f: 7 € R" — R be
differentiable at a, and let v € R". We define the directional derivative of f at a
with respect to v, written as I, f(a), as follows: pick any differentiable curve a(l) with
a{0) = a and a'(0) = v (for example, we could pick a(t) = a + vt). and define D, f{a)
to be the rate of change of the function f at £ = 0 as we move along the curve a. To be
precise, let 3(t) = f(a(t)), note that 3'(t) = Df (a(t))a’(t), and then define D, f(a) to be

D, fla) = 3(0)
= Df(a(0)) ' (1)
= Df{a)v
=Vfla)-v.

4.23 Exercise: Let (x,y,2) = f(s.1) and (u,v) = gz, y, z). Find a formula for

Notice that the formula for D, f(a) does not depend on the choice of the curve aft). The
(directional) derivative of [ in the direction of v is defined to be the D, fla) where

#

w is the unit vector in the direction of v, that is w = ,:l .

4.25 Exercise: Let f(r,y,2) = zsin(y® — 2rz) and let a(t) = (v, 3¢, '=9), Find
the rate of change of [ as we move along the curve aff) when { = 4.

Sav fla) = b. The

ction in which f

increases most rapidly, and its length is the rate of incredse of f i that girection.
Proof: The proof will be given in the next chapter. ) &
4.27 Note: Let o € 7 where [7 is an open set in R”, and let f: 7 € R" — R™ be

differentiable. The k' column vector of the derivative matrix Df{a) is the vector

. . . T
focla) = 2L (a) = ('—;‘L(a}_---_%_%m) ER™,

1
iy, iy,

which is the tangent vector to the curve Gi(t) = f(n ;..{f)] at t = 0, where ay, is the curve
through a in the direction of the standard basis vector e; given by o () = a + teg.

The " column veetor of the derivative matrix Df(a) is the vector
p - T
Vela) = ($ (@), $ (@)

which is orthogonal to the level set fy(x) = fi(a), and points in the direction in which f;
increases most rapidly, and its length is the rate of increase of fi in that direction.

6

we say that Vf(a) is perpendicular to the level set f(x) = k. We mean that Vf(a) is

perpendicular to the tangent vector a’(0) of every differentiable curve given by
a:(—€,€) SR - f1(h) = {x e U|f(x) = k}

with «(0) = a.

Let a be any such differentiable map

Since

a(t) € f~1(k) forallt € (—¢,¢€)

We have f(a(t)) =k forall t € (—¢, €) [Near zero]
By the Chain Rule
Df(a(®)a’'(t) =0

forall

t € (—¢,€)

Df (a(0))a’(0) =0
Df(a)a’'(0) =0
Vf(a@)-a'(0) =0

Given

any unit vector u € R"

Ifweletd = H(u, Vf(a)) € [0, 7] be the angle between u and Vf (a)

(Assu

Then,

ming Vf(a) # 0).

Dyf (@) = Vf(a) - u = |Vf(a)| cos®
So Dy, f (a) has maximum value |Vf(a) |

which is attained when cos 8 = 1 thatis when 6 = 0
that is when u is in the direction of Vf (a)

_ V(@

u= )
[Vf(a)]
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= 9(f@) + Da(F@) ) - @)
~ h(a) + Dh(f(a))Df (a)(x — a)

Verify these approximate do fall in the interval

Def. Let f: U € R" = R be differentiable ata € U and letu € R™.

We define the directional derivative D, f (a) of f at a with respect to u
as follows.

Choose a differentiable function (path) a: (—¢,€) € R » U € R™ with
a(0) =aanda’(0) =u

(for example we could choose a(t) = a + ut)

Weletg:(—¢,e) SR-> R

is given by g(t) = f (a(tl)) and we define
Dyf(a) = g'(0)

By the Chain Rule

9@®) = f(a(®)

g'(®) = Df (a(®))a' (1)

Dyf(a) = g'(0) = Df (a(0))a’(0) = Df (a) - u = Vf(a) - u
When function only have one variable, usually use prime
notation.

HW 4
Some book only define u to be unit vector




Examples (Given some functions f(x, y) determine whether they are differentiable at a point (a, b)
(usually (a, b) = (0,0))
eg.

For
xy

o) =) =00
0 (x.¥) = (0,0

We saw that for x = rcosf,y =rsinf
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f(x, y) = %cos 26

and f is not continuous at (0,0)

(hence as we shall prove f cannot be differentiable at (0,0)).
Also, notice that

of .,
5-(00)= g'(0)

t+0
t=0

0
where g(t) = f(t,0) ={¢z =0
0
forall t
Sog'(t) = 0forallt.
%(00) =g'(0)=0
ax =9 -

Similarly

af .
5(0:0) =0;

eg

Let f(x, y) = |xy|

Then |xy| < %(xz +y?) = %(\/?+_yz) (\/xT-W)

We claim that f is differentiable at (0,0) with Df(0,0) = (0,0)
Lete > 0.

Choose § = 2¢

Let (x, y) be arbitrary.

Suppose |(x,y) — (0,0)] < &
that /xZ + yZ < § = 2¢

_ 1 _
)= 100 = 00) (3 Z )| = 1 a)] = oy £ V7757 (757 < el(s3) - 00|

Thus, Df (0,0) = 0 = (0,0)
P B

X242 52

Change it to

x3 = 3xy?
fy) ==

Eg Let f(x,y) = [|xy|

If f(x, y) was differentiable at (0,0)
then D(q,1)f (0,0) would exist:

For g(t) = f(t,t) = VtZ = |t|

We would have D(y,1)f(0,0) = g'(0)
But g'(0) does not exist.

(We remark that % (0,0) and % (0,0) both exists and are zero).
X3

Eg. Try f(x,y) = {¥**+* (u) # (00)
0 (xy)=(00)

x3-3

2
B Let f(x,) = TT;Z if (x,) # (0,0)
0 if(x,y)=(0,0)

Forx =rcos@,y =rsinf.

f(x,y) =r(cos® 8 — 3 cos 8 (sin 9))
=7r(4cos®8 —3cosh)

=rcos 30

Not differentiable

Not align with the tangent plane.
(Not smooth)

Suppose f(x,y) is differentiable at (0,0)
t3-0

Forg(t) = f(t,0) = 75 =t

Sog'(t) =1forallt

and%(o,o) =g'0) =1

Forg(t) = f(0,t) =0
We have g'(t) =0
SOg(o,O) =g'(0)=0

If f was differentiable at (0,0) we could have D )£ (0,0) = Df(0,0) Cj) =(1,0) (:};) =u
But for example, for fixed 6. and let (u, v) = (cos 8, sin 6)

For g(t) = f(tcos@,tsinf) =t cos 360
So g'(t) = cos 36

Sowestouidhave )= Slke—a x-aN
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But for example, for fixed 6. and let (u, v) = (cos 6, sin 6)

For g(t) = f(tcos8,tsinf) =t cos 36

So g'(t) = cos 36

So we should have

Dicos 8,sin6)f (0,0) = g'(0) = cos 36 V\&) - { é<‘l~al />§— QQ‘)
And

Dicos 6,5in ) (0,0) = cos 6.

Since it is not true that cos 8 = cos 36 for all 8, f cannot be differentiable at (0,0).
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Term Test 2 Preparation

2019568 15H 9:56

NOTE: The MATH 247 Term Test 2 will be held on
Tuesday June 18, from 4:30-5:20 in MC 4021.

It will cover Sections 1.22-1.29, Chapter 3, Sections 4.1-4.19,
and Assignments 3 and 5 (but not Assignment 4).

You will be asked to prove 1 of the following 3 theorems.
Theorem 1.29 (The Heine Borel Theorem)

Theorem 3.12 (The Bolzano Weierstrass Theorem)
Theorem 3.37 Parts 2 and 4 (The Extreme Value Theorem)

K H <http://www.math.uwaterloo.ca/~snew/math247-2019-S/>
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chap5
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13:07

Chapter 5. Differentiation

5.1 Remark: We now begin a more detailed and theoretical presentation of differentiation
in Enclidean space. We repeat some of our definitions and restate our theorems in a
different order and provide rigorous proofs for the theorems which were not proven earlier.

5.2 Note: Recall that for f: U C R — R and a e U,

[ is differentiable at o <= lim M exists
r—a T —
= ImeRVe>0>0Veell O<|r—a|<d = w — m,| <€

= ZmeRYe=03=0Yrell O<|r—a|< d = |f(.c] — fla) —mle — u)| < ele—al
= ImeRVe>0W>0Veell |x—a|<d=— |f[:::) — (fla) +mfx — r1})| < elx—al.
In this case, the number m € R is unique, we call it the derivative of f at a and denote
it by f'{a), and the map £(z) = fla) + f'(a)(x — a) is called the linearization of f at a.
5.3 Definition: Let f: 00 C R" — R™, where U7 is open. We say f is differentiable at
a € U7 if there is an m x n matrix A such that

Ye=03d=0Veell (|.1r —a| <4 = |f[J:) —(fla) + Alx - (I)]| < el — r1|)
We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df{a). The affine map L : R" — R™ given by L(z) = fla)+ Df(a){z—a),
which approximates (), is called the linearization of [ at a. We say [ i differentiable
in 7 when it is differentiable at every point a € U,

5.4 Example: If [ is the affine map f(x) = Ar + b, then we have Df{a) = A for all a
Indeed given € = 0 we can choose § = 0 to be anything we like, and then for all 2 we have
[fla) = fla) = Alx —a)| = [Ax + b~ Aa — b~ Av + Aa| =0 < €|z~ al.

5.5 Theorem: (The Derivative is the Jacobian) Let [ U C R" — R™ and let a € U,
If [ is differentiable at a then the partial derivatives %%{ﬂ] all exist and the matrix A

which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).
Proof: ‘Su JpUbL. that f is differentiable at o. Fix indices & and ¢ and let g(t) = fula +feg)
so that fa} = ¢'(0) provided that the derivative g'(0} exists. Let A be a matrix as in
the dl-ﬁumc:n of dlﬁ':‘rontmhlhty Let € = 0. Choose d = 0 such that for all @ € U/ with
|x —al = & we have |f = fla) — Alx — u)| < elr —al. Let t € R with [I| < 4. Let
x = a+te;. Then we have |r—a| = |teg| = [t < § and so |f a)— fla)—Alx —u}| < elr—al
Since for any vector u € R™ we have |ug| < |u|, we have
la(t) = g(0) = Ay e t| = [fula + ter) = frla) = (Altes)), |
If(a +teg) = fla) = Altey)|
|f ra}—A{.x—u)|
<elr—al =€l

It follows that Ak = g'(0) = :;{’; {a), as required.
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The maximum does exist by the Extreme Value Theorem since the sphere is compact S*~1 =

{x € R"| |x| = 1} is compact. (S*! is closed since S*~* = g~1({1}) where g: R" - R is the
continuous function g(x) = |x| = Vx?2) and since the function f: S"~1 - R given by f(x) = |Ax| is
continuous.

Elementary function.

n

n
Ax=A Z Xe€p | = ngAeg
=1
n

=1

n
|Ax| = Z|xeAee| = ZlAell
=1

=1
Ae, is the £t column of A.

Also for A, B € M5, (R)
|14+ BI| < |1Al] + [1B1]
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5.6 Definition: Let A € M,,...(R} and let § = {x € R"| || = 1}. Since S is compact,
by the Extreme Value Theorem, the continnous funetion f: R™ — R given by f(z) = |A;r|
attains its maximmm value on §. We define the norm of the matrix 4 to be
|[A]| = max {|A.'r| ||_r| = I}.

5.7 Lemma: (Properties of the Matrix Norm) Let A € M, .,(R). Then
(1) |Az| = [|A|| || for all 2 € R™,
@Al = X X

k=1i=1
{31 )A

Proof: When # =0 € R® we have |Az| = 0= ||A]| |z| and when 0 # 2 € R™ we have

A ¢|, and

| is equal to the square root of the largest eigenvalue of the matrix ATA.

|| = 2] A

= lel| A < lal 141l

This proves Part (1), To prove Part (2), let » € R™ with |z| = 1. Then |z < |z| < 1 for
all { 50

|Az| = | Z{A:t')kck| <3 || = 3|30 Axen
k=1 k=1 k=1"i=1

mon m n
<3 Y Al el = 38 gl
E=1i=1 k=1¢=1
We omit the proof of Part (3), which we shall not use (it is often proven in a linear algebra
course).
5.8 Theorem: [Differentiability Implies Continuity) Let f - U € R™ — R™. If | is
differentiable at a € U, then [ is continuous at a. e open in R" with a € U.
Prool: Suppose [ is differentiable at o, Note that for all o € U7 we have
|f () = fla)| = |z} = f(a) — Df(a)(z — a) + Df(a)(z — a|
< |f{:r} — fla)— Dfla){x — r1}| + | Df{a) (z —a)
< |f(2) - f(a) - Df(a)(a — a)| + |DF (@) |z —

Let e = 0. Since [ is differentiable at a we can choose 4 with 00 < 4 < such that

T
| —a| <d=|f(x) - fla) - Df{a)(x — a)| < |z —q
and then for |z — a| < & we have
[flx) = fla)] < | (=) = fla) — Dfla)(x — a)| + ||Df(a)]| |« — a]
<l — o + IDf(@)][ |2 — a| = (1+ || DF @) |+ o]
< (1+][Df()])d < e

R case:

Lete >0
Choose § > 0 with § < ——

1+f'(a)
such that

x—al<8=|f) - f@)-f'@x—-a)|<1lx—-al

= f@ - f@]| < f) = F@) - f'@x — )| + |f' (@) (x — a)]|
<lx—al+|f'@]|lx—al = (1+f'()lx —al

<1+ f'(@)s

For R", simply change f’(a) to Df (a).
And add || || matrix norm.

Theorem: (Continuous Partial Derivatives Implies Continuity)

Letf:U € R" -» R™

with U open in R" and a € U

Suppose that all the partial derivatives? (x) existat every x € U and are continuous at a.

xe
Then, f is differentiable at a.

)
Remark: a—’:; (@) = g'(a,) where g(t) = f(ay, -, ap_1,t, Qpy1, ) On)
Hence

i .
a_xi(“l' s @y, gy, e Gy) = G'(0)
forall t

thatis
a
2 (@®) = ¢ (@)

where a(t) = (ay, ..., @p_1, t, Qpyq, o @)
Proof:

Lete >0
Choose § > 0
sothat B(a,8) € U

Ofk Ak €
o) -S| <
forall y € B(a, &) and indices k, £.
We want to show that, Vx € U, |x — a| < § = |f(x) — f(a) — Df(a)(x — a)| < €|x — al
LetUp = (X1, ., Xp, Qppy, o) Q)
for0 < £ < nwithu, =a,u, =x
and note that each u, € B(a, §)
Since B(a, 8) is convex)

and so that

For1<?¢<n,let

ap(t) = (X1, s Xp41, b, Qppy, o) Oy)

for t between a, and x, (a1. as, as) - (xl, as, a3) i (Xp X2, a3)
so that ag(ag) =Up_q

and a,(x,) = U,

Fori1<f¢<nl1<k<m

Let g¢ () = fie(@,(t))

so that

a
g0 ® = 2 (a09)

51X MATH 247 [f)%5 44 71



Let gy ¢(t) = }’(k (‘l_e(t)s
so that

a
i o) = a—f;(ae(f))

for t between ay, x,.

By the Mean Value Theorem
(applied to gy ¢ (t) for t between a, and x,)
We can choose S , between a, and x, so that

(Xi - a#)g('k,l’) (Sk,i) = Yk,
thatis

o(xe) = gue (at’)

Z_f;(al(su)) (xe = ar) = fi(Ue) = fi(Ve-1)

So we have

fe@) = fil@) = fie(

0) = Fe00) = Y felU) = felUra) = " T (aa(5e) - (e = )

o) -0
70 = @ = (O @G = ), = ) 5 (args ) (xe =)= Y 2% @~ a0)
=1 =1

=(B(x-a),

where B is the matrix with entries By , = % (ae (Sk’g)) - g—i’; (a)

Continue right side

Triangle Inequality

make this < €|y — b|

5.9 Theorem: (The Chain Rule) Let f: U CR" + V C R™, let g: V € R™ — R',
and let h{x) = g(f(x)). If [ is differentiable at a and g is differentiable at fla) then h is
differentiable at a and Dhia) = Dyg( f(a))Df(a).

Prool: Suppose [ is differentiable at @ and g is differentiable at f{a). Write y = f{x) and
b= fla). We have
() — h(a) - Dg(f(a)) Df(a)(x — a)| = |g(y) - 9(b) — Da(b) Df(a)(x — a)|
= |a(y) = g(b) = Dg(b)(y — b) + Dgib){y — b) = Dg(b)Df (a)(x — a}|
< Jgtu) = g(b) = Do)y — B)| + || Dg()]| |y = b= Df{a){x - a)|
= |otw) = o(8) = Do)y = 1) + (1+ DB |/ (=) — f(a) = Dfa)a —a)

and _
[y =0 = [ flx) = fla)] make this < €|x — a|
= |f(x) = fla) — Df(a)(x —a) + Df(a)(x — a)
< [flx) = fla) = Df(a)(x — a}| + [|Df (a)]] |z — al.

Let € = 0 be given. Since g is differentiable at b we can choose & = (1 so that

- \ \ V] e 3 _
ly— bl < 8o = [glu) — 9(b) = Dalb)ly = b)| < s v — -
Since [ is continuous at @ we can choose 4, = (0 50 that
[r—al <8 =y — b = [flx) = Jla)] = do [

Sinee f is differentiable at @ we can choose d; = 0 so that
[ = a| < d2 = |f[-f'}' — fla) = Df{a){x — u]| < |o—al
and we can choose dy = (1 so that

|o—a| <8 = |flz) ~ fla) — Df{a)(x —a) < 2iJ+|D_qnju_\||';|'I al .

Let & = min{d;,ds.d;}. Then for |z —a| < § we have
[y — bl < |f(x) — fla) = Df(a)(z — a)| + | Df(a)(z — a)|
< | —a| + ||Df{a)|] |z — a]
= (L+|[Df(a)||} |z —al

M,

50

la(y) — g(b) — Dg(b)(y — b)| ly—b < §le—al

P
= 201+ D ()]}
and we have
(14 IDg(®)I))|(2) — f(a) — Df(a)(w — a)| < §|a — af
and so
|h{.r} — hia) — Dy fla))Df{a)(x— r1}| < Sle—al+ 5o —al =elz —al.
Thus h is differentiable at a with derivative Dhia) = Dg( f(a))Df(a), as required.

7
1

5.10 Definition: Let f: U C R" — R, let o € R and let v ¢ R", We define the
directional derivative of f at a with respect to v, written as D, f(a). as follows: pick
any differentiable function o : (—e,e) € R — U7 C R", where € = (), such that o{0) = «
and o'(0) = v (for example, we could pick at) = a + vt), let g(t) = flalt)). note that by
the Chain Rule we have g'(t) = Df{a(t))a’(t), and then define
D, fla) = g'(0)

— Df(a(0)) a’(0)

= Dff{a)v

=N fla)-v.
Notice that the formula for D, f(a) does not depend on the choice of the function a(t).
5.11 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.
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Corollary: If f:U € R® -» R™ is e! in U, which means that all the parital
derivatives Z—i’; (x) exists and are continuous in U.
Then f is differentiable in U.

Elementary functions are differentiable assuming open domain

Fy) = |yl

f is continuous everywhere for all (x, y) € R?

and f is not differentiable for all (x, y) for which |xy| # 0.
Vu is continuous. u = 0

Vu is differentiable when u > 0

Iff:U € R® > Ris e’ in the open set U.

Then f is differentiable.

The basic elementary functions are the single-variable functions, c, x, x™
where Z*

x% forx >0

e*,Inx forx >0

sinx andsin'x for —1<x<1

with the k™" inclusion

LR > R™, I, (t) = teg = (0, ...,0,t,0, ...,0)

and the k" projection P,: R* - R
Pi(x) = x

The basic open-domain elementary functions are the same functions but
restricted to open domains, so
1
xn defined forx > 0
sin™! x defined for—1 < x < 1

fiU S R* > R™
g:V S R™ > R*

h=gof:UNf Y (V)SR*">R

If f:A € R" - R™ is elementary, then f is continuous (in A)

If f:U € R" - R™ is an open-domain elementary function (obtained by
applying operations of functions to the basic open-domain elementary
functions)

Then f is differentiable, C* (actually C*) in its domain, hence differentiable
inU.

eg. For f(x,y) = |xy|, f is continuous at every (x,y) € R? because f(x,y) =
Jx2y2.

Also, f is C* hence differentiable in U = {(x. y) € ]R"|xy * 0}

because f is open-domain elementary in U, indeed.

Ifp(xy) =xg(xy) =y

s(u) = u?

r(u) =+Vuforu>0

thenf=r°(50(p-q))
We also saw that f(x,y) = |xy| is differentiable at (0,0)

Note: That when a # 0, f is not differentiable at (a, 0).
Because for g(t) = f(a,t) we have g(t) = |at| = |a] - |t| which is not
differentiableat t = 0 so g—§ (a, 0) does not exist

Similarly, % (0, a) does not exist so f is not differentiable at (0, a) when a #
0.

We plan to show that when f: U € R® - R™ is €2 in U, which means that all
second order partial derivatives

0%f; ) = % <%) [€3)

0x,.0xp 0x, \0xp
exists and are continuous at every x € U, then




Notice that the formula for £, fla) does not depend on the choice of the funetion off).

5.11 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

5.12 Theorem: Let [: U C R" — R be differentiable at o € U, Say f(a) = b The
gradient ¥ fa) is perpendicular to the level set f{x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proofl: Let at) be any curve in the level set f(a) = b, with a(0} = a, We wish to show that
Vf(a) L a'(0). Since alt) lies in the level set f{a) = b, we have f{a(f)) = b for all t. Take
the derivative of both sides to get Df(a(t))a’(t) = 0. Put in ¢ = 0 to get Df{a)a’(0) = 0,
that is Wf(a) - o'(0) = 0. Thus Vf(a) is perpendicular to the level set fz) = b,

Next, let u be a unit vector. Then Dy, fla) = Vf{a) - u = |Vf{a)|cos#, where 8 is the
angle between w and Vf(a). So the maximum possible value of D, f(a) is |Vf(a)|. and this
oceurs when cos# = 1, that is when # = 0, which happens when « is in the direction of

Vfla).

5.13 Theorem: Let I C R" be open, let [ U C R" — R™ and let a € U, If the partial
derivatives —-Lk(:rj are all continuons at a then f is differentiable at a. If f is C' in U then
fis differentiable in U

Proof: Suppose that f is CUin U7 and let @ £ U, Since each function 'f,-j,* is continnons at o
we can choose r = 0 so that Bla,r) © U and |"‘F"{g,.lj ’J-"* ()| < ;5 forally € Bla,r). Let
r e Bla,r). Let g(t) = fla+t{r—a)). By the Chain Rnlc, g'(t) = Df (a+t{z—a))(x—a).
By the Mean Value Theorem (for a real-valued function of a single variable) we can choose
s € [0,1] such that g'(s) = g(1) — g(0) = flx) — fla). Then, letting y = a + s(x — a) so
that g'(s) = Df(y){x — a), and nsing Properties of the Matrix Norm, we have

[ () = fla) = Df(a)(x = a)| < |f(x) ~ fla) = ¢'(s)] + |o'(s) = Df{a)(z — a)|
=0+ |g'(s) —Df(u e —a)| = [(Df(y) - D)) (z —a)
< | Df(y) - Df(a)] |« — a

m

n
Z E |lJ-i’r au (a)] |z —al
£ 5l =clr—al
E=1{=1

M

I.-'\

1M
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9%f; a
—f’(X)——< f')( )

0x, 0xp
exists and are continuous at every x € U, then

% fi
0x,.0xp )= <3Xg> ®
forallx € U

We first prove a lemma
Lemma (Iterated Limits)

Let/ € Rand ] S Rbe open intervalsin Rwitha € [ and b € ]
LetU =(Ix)\ {(ab)}

andletf:U € R? > R

Suppose that lim, ;) (4,5 f(x, y) =u€R

and suppose that for every x € I \ {a}

;ilré f(x,y) exists

Then lim,_q lim,,_,;, f(x, ) = u

egFor f(x.y) = s
) = {] 2328
and )
= 220

Solim,_,q limy_ f(x,y) =1
But limy,_, lim,_o f(x,y) = 0



5.14 Corollary: Every function [ : U7 C R™ — R™, which can be obtained by applving
the standard operations (such as multiplication and composition) on functions to basic
elementary functions defined on open domains, is differentiable in U,

5.15 Exercise: For each of the following functions [ : R? ' {(0.0)} — R. extend the
domain of f(x.y) to all of R? by defining f(0.0) = 0 and then determine whether the
partial derivatives of f exist at 90,0) and whether [ is differential at {0,0).

(a) flo,y) = (b) fl,y) = |zl (e} fla,y) = v/leyl
(d) flo,y) = s o) fla.y) = Gorins () flo.y) = T

5.16 Definition: For a.b e R", we define the line segment from a to b to be the set
[a.b] ={a+tb—a)0<t <1}
For A C R™ we say the A is convex when for all a,b € A we have [a, 5] C A.

5.17 Exercise: Show, using the triangle inequality, that B(a,r) is convex for al @ € R"
and r =0,

5.18 Theorem: (The Mean Value Theorem) Let [ U C R" — R™ with U open in R™,
Suppose that f is differentiable in U, Let w € R™ and let a,b € U with [a,b] C U. Then
there exists ¢ € o, b] such that

Df(e)(b—a) - = (f(B) — f(a)) - .

Proof: Let a(t) = a+t{b—a) and define g ¢ [0, 1] = R by g(t) = f{a(t}) - u. By the Chain
Rule, we have g'(t) = (Df(a(t))a’(£)) - v = (Df(a(t))(b — a)) - u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s € [0, 1] such that
g'(s) = g(1) — g(0), that is (Df{a(s))(b—a)) «w= f(b)-u— fla)-u=(f(b) — fla)) - u
Thus we can take ¢ = afs) € [a,b] to get Df(e)(b—a) - u= (f(b) — fla)) - .

5.19 Corollary: |Vanishing Derivative) Let U7 € R" be open and connected and let
[ U= R" be differentiable with Df(x) = O for all x € U. Then f is constant in U/,

Proof: Let a € U/ and let A = {.'r S U|f{.‘r} = f[u]} We claim that A is open (both
in R" and in U). Let b £ A, that is let b £ U7 with f{b) = fla). Since U is open we
can choose v = 0 so that Bib,r) € U. Let ¢ € Bib,r). Since B(b, r) is convex we have
[boe] € Bibr) C U. Let uw = f(c) — f(b) and choose d £ [b.e]. as in the Mean Value
Theorem, so that (Df(d){e — b)) «u = (f(c) — f(b)) - u. Then we have

|1e) = 10)]* = (#(e) = F(0)) - u = (Df(d)(c— b)) +u=0

since Df(d) = O . Since |f{r:}—f{b}| =0 we have f{e) = f(b) = fla), and so e £ A. Thus
Bib,r) C A and so A is open, as claimed. A similar argument shows that if b 74 A
and we chose v = 0 so that B(b,r) C U then we have fic) = f(b) for all ¢ € B(b,v) hence
Bibr) C UY A and hence U4 A is also open. Note that A is non-empty sinee a € A, 1f
U A was also non-empty then 7 would be the union of the two non-empty open sets A
and 7Y A, and this is not possible since [7 is connected. Thus U A =@ so U7 = A, Since

U=A= {;r: 1S U|f(.1:) = f(a)} we have fla) = f{a) for all x € U, so [ is constant in 7,

wr
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Chapter 6. Higher Order Derivatives

6.1 Lemma: (Tterated Limits) Let I and J be open intervals in R with e € T and b2 0,
lot U = (T = 0y {051}, and let f: U7 < R. Suppose that liu:‘ flo, y) exists for overy r e T
=

ane that  lim ”_f[.e'. y) = u e R Then lim Ill_l!} fleoy) = .

[EXTE

Proof: Define g : [ — R by gix) = lillll fle,y). Let ¢ = 0. Sinee luu . fle.w) =
) (x,u)—+(m.b)
we can choose & = 0 such that for all {z,g) © IV with 0 < |( vl [er bi| = 28 we have

flx.y)
0< [{z.p)

= Jowith < |y~ b = & we have

u| e Letx e T with( < |z —a| <4, Forall y €
: u| < ¢ and henee

(a,b)] = a|+ |y — b < 26 and so | f{z,¥)
i) =l < |gle) — fle gl + |z w) — v < |glz) — Flew)| + e

Take the limit as g — b on both sides to get |giz) —u] < e

Thus h'm glx) = u, as required.

6.2 Theorem:

witha e U,
af

{Mixed Partials Corminte) I:[ M0 C R — Rowhere U7 s open in RY
and let B8 {1, n}. Supposs

(i) exists and is continucus in U, amd

cists in U7 and is continuons at a.
L {a) exists. Then zoof—{a) = g2t (a).

&
frien Tgibes,

[z
Proof: When & = ¢ there is nothing to prove, so suppose that b £ {0 Choose r = 0 50
that Bia,2) € II. For |z| < r and |y < ¢ note that the points @, @ + xep, @ + yep and
a + ey + yep all lie in B, 2r). For |X| < r and |y _ define

fla+xep +yee) — fla+ zep) — fio+ yee) + fla)

By the Mean Value Theorem. applied to the funetion fla + zeg + wee) — fla + o) as a
function of g, we can choose ¢ hetween 0 and y such that

glz.y) =

ol ZE a4+ zey + teg) — fL{a + ter)) = gl ).

By the Mean Value Theorem, applied to the function I—,JLIn = xey, + ey ) as a fiunetion of x,
we can choose s hetween 0 and & such that

F i+ s+ ter) = 2 {0+ rey + ter) — A {a + ter).

Also by the Mean Value Theorem, applied to the fnction (o +wey + yee) = flo+rey) as
jon of &, we can choose # between O and o such that

i

oA (0 rew + e — 2h (o + ree)) = gl u).
Then for ] < v and 0 < |y] < ¢ owe have
,.%E[u + rep + e — ;,:r—m +reg) @ f
=— (o + seg + o)
W r}.I'A-(JJ'J

= : : o= .
Sinee —le;— is continnous, the limit on the right as (x,y) — (0L0] is equal to |JJy<JI|[“J'
and since TufT is continuons, the limit as y — 0 of the limit as = — 0 on the left is equal to

a .

f-r_—lfu]\ so the desived result Tollows from the alwove lemima.

6.! Comllary I m”
(x) =

apen and f : CRY = Ris CF in U7 then we have

(i) for all o & U andd for all k.6

T .Jr., r|JolJl’

1
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Maybe B(a,7) € U
Foru,v € Rwith [u| <7, |v| <rwe have a + se; + te, € B(a,2r) S U
forall U.

Let g(u,v) = f(a + uey + vey) — f(a+uey) — f(a+vey) + f(a)

By the MVT, applied to the function f(a + ue + ve;) — f(a + ve,) using the

variable v (with u fixed), we can choose t between 0 and v
such that

of of
v (a—n (a +uey + tey) — 6_x,(a + te,))

= (f(u +uey +vey) — fa+ Ve,)) - (f(a + uey) —f(a))
=g9@wv)

By the MVT applied to the functlon— (a +uey + tel) as a function of
u (witht ﬁxed) we can choose s between 0 and u such that

uss 3x ———(a+se,+te,) = 7(11 + uey + tey) 7*(11 +tey)
«

So we have uv (H@ (a+se+ te,:)) 9(w,v)

Apply the MVT again, to the function
f(a+uey +vep) — fa+uey)
Using the variable u, we can choose r between 0 and u such that

u (i (a+rex+vey) —f(a+ rek)) =gwv)
Ox

2f

e rarr (a+ sey + tey)

ForO<|ul<r0<|v|<r

of
a—xk(a+rek+ve,)—3x—k(a+rek) oy S 0t seq tt00)
v axkax k ‘.
Since 17x 3 (x) is continuous at a and since |s| < |ul,|t| < |v]. We have

2

*f
Mooy Fga, (4 50k + tee) = 5o (@)

Smce— (x) is continuous everywhere (hence ata and at a + ve,)

O (a+reictver)—2L (atrex)

We have lim,, o D‘————
?f

By the above lemma, equal to —— Tooom — (a)



6.4 Exercise: Verify that for flz,g) = we have l'lllli? ]i]]ll fle oyt # lill(ll ]i]]ll Fix.u).
o Yo =il 7=+

ke Lif () # (0,0)

6.5 Exercise: Let flo.yl = a4y - Verify that the mixed
0 Lif () = (0.0}
partial derivatives 2 (0,0 and 5L (0,0) both exist, but they are not equal.
iy it
6.6 Definition: for [ - 07 C RY — R, where U7 is open in R” with a € U, we define

Df(w) = fle) and for £ € 2% we define the /' total diffe
Df fla) i R" — R given by

ntial of [t o to be the map

D= ¥ 3 - 5
k

2 F
1=Lka=1 k=l

) g gy - - -ty
i

provided that all of the ™ order partial derivatives exist at a.

6.7 Example: When f: I/ € R* — R is (% (50 the mixed partial derivatives commute]
we L

DO (u,v) = fla.b)
D'fa,b)fu,v) = SL(a,blu+ f—jf(rj.b]l-

i

Dfia, b, v) = 2 (o, b)u? + 252 () we + 26 (0, 0 02

Drity e
6.8 Thmrem { Tavior’s J'hm: ) J'or F:UC R = R where I7 is open in R™. Supposs

that the m™ o » xist i L. Then for all a,x € U such that fisc™

[a, x] U there exists ¢ £ [a, J] sueh that B{

fla) = T LD flale —a) + 2 DMF(e)(x - a). What this looks like at two variables. Q
i=0
Proof: Let a,x € U7 with [a,2] C U Let af) = a + #{xr — a) for all £ £ R and note that

afth € U for 0 < ¢ < 1. Sinee {7 is open and o is continuons. we can choose & = 0 so that

afth e U forall ¢ € T = (—61+4). Define g: I — R by gt) = fla(t)). By the Chain

Rule, we have

g ()= Df{ait))a'(t) = Df (a(t)}(x - a) T S {alt)) (e — a0 = D'flalt))(x —a).
SN

By the Chain Rule again. we have
dit=3 (%
i=1

i=1

(o)) (2, — ",})[J-, —a)) = DPf{alt))(x — a).

An induction argnment shows that,
gt} = D'F{alt))ix = a).
lied to the function g(t) on the interval [0.1]. we can choose

1 . .
b %gu.[“] 1 ﬁ_ql'"'{ﬂ]_ that is
i}

f\'.r]—mi S0 a)e —a) + D" (Al

Thus we can choose ¢ = afs) € [o.x].
-

6.9 Definition:

mth

For f:17C R" —+ R, where I7 s open in R with @ © 7, we define the

Taylor polynomial of f at @ to be the polynomial )
D‘F (a,lo)(u, ly: {-\( A @) = (@)
T"fla)(z) = ¥ i T ) Tif(@)(x) = f(a) + Df(a)(x — @)

(The linearization of f at a)

1
T2f(@)(x) = f(a) + Df (@) (x — ) + i Q"Hf (@)(x - a)

u+ ¢ a‘F (f\b) where

order par
the lmxwl |Nlr|1<ll derivatives commute ] we

TH(a)(x) = fla) + Df(a)x — a) + (x — )T Hf(a) (x — a)

where Hf(a) £ M, ., (R} is the symmetric matrix with entries Hf(a)g, = duu.. L ja). The 32/‘;( ) f @ *f @

matrix Hf(a) is called the Hessian matrix of f at a. \V2 Hf(a) = 9x,0%; “ dx,0x, @ %10y @
= 2

610 Definition: Let A € M, (R) be o symmetrie matriz, We say that { _f

(1) A is positive-definite when v’ Au = 0 for all 0 £ v e R, D E (a b)(\A’/ U)~ a/ b) U 9%0%:(@)

(2] A is negative-definite when v’ Au < 0 for all 01 £ o € R, and Thatis Hf (a) € My(R)

(31 A is indefinite when there exist 0 # w0 € R® with o’ Au = 0 and o7 Av < 0, X 5or

. . . - . _ with Hf (@) = 557 @

.11 Theor: (Characterization of Positive-Definiteness by Eigenvalues) Let A< M, (R) (

be symmetric. Then ‘(’ (alb) " 'V —r a a ﬁ/ This matrix is called the Hessian matrix of f at a.

(1) A ds positive-definite (7 and ondy 0§ all of the elgemalues of A are positive, 513 X j

(2} A ls negative-definite if and only i all of the cigervalues of A are pegative, and

(3) A ls indefinite if and only if A has a positive elgenvalue and a negative ejgenvalue, Ve -+ b (ﬁ b)\/)- Ex1. Define local maximum and minimum values for f:U € R™ - R

Proof: Suppose that A is positive definite. Let A be an eigenvalue of A and let u be a 2 / Ex2. Show that if Df(a) # (0, ..., 0)

& unit eigenvector for A Then A = Mu* = My u) = dwew = Aw-u = 27 du = 0 Then f does not have max or mim at a.

Conversely, suppase that all of the eigenvalues of A are positive. ce A is symumetric, - N _’2

we can orthogonally diagonalize A. Choose a matrix P £ M, (R} with P¥ = P so that St e l:c 1 S C

PTAP = D = ding{Ay, -+, Ay ). Given 0 £ u € R®, let v = PYu. Note that v £ 0 since
PT s invertible. Thus aAu = o7 POPTw = o7 De = 32 de® = 0 sinee every & = 0 and &2}—5 (ﬁ/b) Uuv

=1
some oy # 0 This proves Part (1), The proofs of Parts (2) and (3) are fairly similar.

Charmeterization of Positive-Definiteness by Determinant) Let A< M, (R
ammetrie, For each kowith 1=k < 0, et A denote the upper-left k= & sub matrix 1

Then T3f(a,b)(x,y) = f(a,b) + ﬁ(sz(a' b)
(1} A is pasitive-definite if and only if det( 1= 0 for all k with 1< k < n, and
(2) A is nogative-definite if and only if (—1) det(A™) = 0 for all k with 1 <k < n.

Proof: Part (2) follows e
— A is positive-defi

definite. Let 1< k < n. Since u7Au > 0 for all 0 # u € R®, we have (a7 0) A (";) =0,

ily from Pare (1) by noting that A is negative-definite it and only if
We shall prove cne diveetion of Part (1), Suppose that A is positive-

or equivalently o Ay = 0, for all 0 # v & R, This shows that A'™ is positive definite,
i I]I(‘(Jl{lll all of the {u,tmu]uu— of A" gre positive. Sinee det{ A") is equal

F e

T]n pmul af the other di

we shall omit the proof, T

s,
setion of Part {1, s more diffienlt,. We shall not use it and
often proven in a linear algebra course,

Y-
Proof: PTAP = ¢ & &
Y

Let
n,

Global maximum at @ when f(x) < f(a) forallx € A.

.13 Exercise: Lot A = . Determine whether A is positive-definite, negative-

—
o - e

3
-1

2
dlefinite, or indefinite,

6.14 Definition: Let f: 4 C R* — R oand let 0 £ A We say that [ has a local
maximum value at o when there exists r > 0 r-urh l]mt fla) = _|'[ ) for ull xe Byla.r).

Wi e bt b 0 bevea] e b farssmems semadoni b o g Pt Pt
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6.13 Exercise: Let A= [-1 2 1 |. Determine whether A is positive-definite, negative-
2 1 5

dlefinite, or indefinite,

6.14 Definition: Let f: A4 C R* — R oand let 0 £ A We say that [ has a local

maximum value at o when there exists r = (0 such that fla flax) for all & € Bala.r).

We say that f has a local minimum value at @ when there exists r = 0 such that fla) < =

for all ¥ € Byla.r).

6.15 Exerci Show that when f: 7 C R™ — R where U7 is open in R" with o £ [7,if

has a local maxinmim or minimum value at o then either Df(a) = 0 or Df{a) does not exist

(that i one of the partial derivatives ﬁ'E-:rr] s ot exist ).

i
6.16 Definition: Let [0 CRY — R where 7 §s open in R™. For a & U7, we say
o is o erit

point of [ when cither Df(a} = 0 or Df{a) does not exist. Wl
: ;

that ¢ is & saddle polnt of f.
6.17 Theorem: [The Second Derivative Test) Let f: 07 C R® — R with [ open in R®
and let @ € 7. Suppose that f is C? in U with Df(a . Then
(1) 0f H fla) is pasitive definite then f has a local minimum value at o, follows by Taylor's Theorem
(2} if H f(a) is negative definite then f has a local maxinmm value at a, and When A € M,(R) is symmetric (meaning that A7 = 4)
() if H f(a) is indefinite then | has a saddle point at a. all the eigenvalues of A are real. 4 is orthogonally diagonalizable so there exists an orthogonal
: f . - matrix P € 0,(R) = 0(n,R) (so PTP =) (ie PT = P~1)
L g « tha (o) is re-definite, o " .
Prool: Suppose that Hf{a) is positive-definite,  Then such that PTAP = D = diag(Ay, .., Ay)

a loeal maximum or minimom value at o, we say

Since each determinant fum'ticlm det(A™M) s continnous as a function in the entries of the whre 4y, .., A, are the eigenvalues of A.
matrix A, the set ¥ e U [ Hf(a)™ =0 for k= 1.2+ n} is open. Chaose r = [} 5o

that Dia,r) © V. Then we have o’ Hf(e)u = 0 for all 0 # u € BR* and all ¢ € D{a.r). Let Ais positive-definite

x & Da,r) with = # a. By Taylor's Theorem, we have o uTAu > 0forall0 # u € R*

fia) = fla) = Df(a)e —a) = (r —a)" Hf (e} (x —a)  all the eigenvalues of A are positive
Since D f{a) = 0 and Hf(c) is positive-definite. we have fx) < fla) = 0. Alis positive-semidefinite
Thus f has a local minimum value at o, This proves Part (1) and Part (2) is similar. ©u"Au=0forallu € R"

Lot us prove Part (3], Suppose there exists 0 # w ¢ R such that o™ Hf(o)u = 0 © all the eigenvalues of A are non-negative
Given r = 0. seale the vector w if necessary so that o] © Die,r) 007 Let alt) = a 4 tu Afsnegative-definite ...
and let g(t) = flaf)) for 0=<F <10 As in the proof of Taylor's Theorem, we have

for some ¢ € [, x].

Ais indefinite
© 3u,v € R" such thatu"Au > 0 and v Av < 0
© Ahas at least one positive eigenvalue and at least one negative eigenvalue

(orfor—§ <t<1+8) 4t} ~
for some § > 0. i=

o alt))u; = Df{ait))u , and

i
= 5 ot (oft)) wn = T HF (o(t)) . FQuv) = v Au
=1

Sinee g()) = f{a), ¢'(0) = Df{a)u = 0 and g"(0) = u¥ Hf(a)u > 0, it follows from si Q@) = Flww) = ulAu
variable caleulns that we can choose £, with (0 < £, < 1 so that g(¢,) = g{0). When o = aity)
we have = € D{a,r) NI and fir) = flalta)) = glte) = g(1) = fla). and so § does not have
& local maximum value at a. Similarly, if there exists 0 £ » € R® sueh that o' Hfja)v < 0
then f does not have a lacal minimum value at @. Thus when Hf(a) is indefinite, f has a Similar matrix

saddle point at a.

For linear maps
A P71AP

For symmetric bilinear form (and quadratic forms)

6.18 Exercise: Find and classify the critical points of the

) ; ; . A PTAP
() fle, ) = o+ 2oy +* (W) Sl ) = o+ 3y — 6y* (where P is invertible)
Fl Congruent

Choose r > 050 B(a,r) € U and Hf () is positive definite at every x € B(a,)

4

77y defined when 2 + x + y* 2 0. Find T fg.0)(x. )

eg. For f(x,y) =
Solution:

of____ 4
X (24x+y2)°

o8
W (24x+y2)

Pf (8
ox? ((z tx+ yz)z)

0% #f 16y

0xdy " 9y0x (24 x+y2)

2f
Sh=s
S0 £(0,0) = 2
o0 =-1

o
300 =0

a%f
a0 =1

9%f 9*f

Eca_y (0,0) = Fyox 0,0) =0
*f

55700 =-2

Hence

1
2 =2 x4—((x=0)2+2-0-xy—2y?
T2f(0,0)(x,y) =2—x+ 5i (x=0)2+2-0-xy—2y?)
1
=2-x+3 x?—y?
Eg.
Find and classify the critical points of f(x,y) = x® + 3x%y — 6y?

Solution:
Critical point : Definition _

Classify: determine whether max or min or saddle point
Df(x,y) = (3x* + 6xy 3x% —12y)

_ (6x+6y éx)
Hf’( 6x  —12

We have

Df(x,y) = (0,0) & x(x +2y) = 0and x? = 4y
= ((x =0orx=-2y)andx? = 4y)

& (x =0and x? = 4y) or (x = —2y and x* = 4y)

< (x,y) = (0,0) or (-2,1)

Thus, f has critical points at (0,0) and (—2,1).

We have

(0 0 o =("6 -12
Hf(o'o)'(o —12) and Hf(=2,1) (—12 —12)
Fails the test

J3X MATH 247 (#5550 51



detA' = —6
det 42 = 36(-2)

Since det A? # 0, the eigenvalues of A are non-zero. Since A neither positive definite nor negative
definite. 4 must hae one positive eigenvalue and one negative eigenvalue.
Alternatively,

_ _(1 2
A= 53,37(2 2)

-1 =2

£ () :det(x_z X_Z):x273x72

. 34574
So the eigenvalues are A = 3%

So B, hence A, has one positive and one negative eigenvalue.

Thus, f has a saddle point at (—2,1)
The second Derivative Test gives no information about the point (0,0)
We have

f(xy) =x*+3x%y - 6y

So for a(t) = (0,t)

and g(t) = f(a(t)) we have
9(®) = £(0,) = —6t*

So g(t) hasalocal max att = 0.

and for (t) = (t,0) and h(t) = f(B(t)) we have h(t) = £(t,0) = 3

Thus, neither. Saddle point at (0,0)

eg. Find the absolute max and min values off(x, y) = 4xy — x* — 22 on the compact set
B((0,0),2)
Solution:
Df = (4y — 4x%,4x — 4y)
—12x2 4 )
Hf =
f ( 4 -4
Df(xy)=(00) @ y=x’andx=y
Sx=xandx=y
< ((xorx=x1)andy =x)
< (x,y) = (0,0) or £(1,1)
We have £(0,0) = 0, f(+(1,1)) = 1

Let us classify the critical points (for fun)

_(0 4\ _ _(0 1
wron=(§ %)=wma=( 4
f(x):det(x 71):xz+x71
“ -1 x+1
The eigenvalues of A are A = ifj

So A, hence also Hf (0,0) havs one positive and one negative eigenvalue.

So f has a saddle point at (0,0)

Hf(x(L,D) = (’iz _44) =4B

where B = ('3 !

detB®W = —3,detB® =2

So B, hence also Hf(+(1,1)), is negative definite. So f has a local max at (x,y) = +(1,1) with
fxAD) =1

We need to consider 9B(0,2) = S(02) = {(x,y)|x? + y? = 4}
flry) =4xy —x* —2y?

Leta(t) = (2cost,2sint)
and consider

g(®) = f(a(t)) =16 costsint — 16 cos* t — 8sin? t
We need to find the max and min values of g(t) for 0 < t < 21
Note that g(t) = 8 cos 2t — 4(1 + cos 2t)? — 4(1 — cos 2t) = 8sin 2t — 4 — 8cos 2t — 4 cos? 2t 4 +
4cos2t
=8sin2t — 8 — 4 cos 2t — 4 cos® 2t
=4(2sin@ — 2 — cos @ — cos? )
where 6 = 2t
= 4h(8)
h'(8) = 2cos 6 +sin@ + 2sin 6 cos
h'() =0 2cosf (1+sinf) +sinf =0

sin 6

@Zcosgz—m

we give up

Verify that g(t) is 4(2sin 6 — 2 — cos 6 — cos? §) < 0 for all 6.
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Chapter 7. Introduction to Integrals

7.1 Remark: In this chapter we give an informal introduction to integration. We might
include some additional chapters later in which we provide a rigorous theoretical treatment
af integration. For now, we explore some computational aspects of integration.

7.2 Theorem: (Fubini's Theorem) When D = {3, ceRla<zr<bland f:DCR—+R
is continuous, the integral of f on D is written as

f frf.{:f Fla) dL = “_ o) de.

When DY = { ) € R2|a <ax<h, gle)<y<hix } and f: D C R? = R is continuons,
the integral of f on D is given by

/Uf dA = ij floy) dA = f/u fla,y)dedy = /:” (/D:r;}f[r y)dy)d;t.

When I = {(x.y) eR)e<y<d, kly) <<l ]} and f: D CR? = R is continuous,
the integral of [ on D is given by

deA—ijmeM—]ﬁfMmew—A;([i;ﬂmMM}m

T
More generally, when D € R? is a union D = | D; of sets I); € R? which only overlap

i=1
along their boundaries, with each set D; of one of the above two forms, the integral of f
on I is

/ffm_z fdA

When D = {(J:‘_y,_ z) € R3|u <x < b, glr) <y < hix), oy <2< I(::;.y]} and
f:DCR*— R is continuous, the integral of f on D is given by

-[fd‘i—jf flo,y. z) d'l’—/fffryzrhrhﬂb
flxh t{x.y)
= f (j (/ Tl _}(L):Iy)d.r..
T=a y=nglx} z=ki{z,y)

There are similar formulas in the case Hmr the roles of @, y and z are permuted. More
generally, when D C RY is a union D) = U D; of sets D; © R® which only overlap along

their boundaries, with each set D); of lho abom form or of a similar form with x. y and =
permuted, the integral of f on D is

/fim_z ffm

Proof: We may provide a proof later.
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Dy nD]fZ =@ foralli # j,
Ex. Let D be the triangle with vertices (0, —1), (2,-1), (2,3)

Find [, 2xy dA

Integral designed to measure area or volume.




7.3 Note: When D © R?, the integral of the constant function 1 on D measures the
area of the region [ and, when f : D € R? = R. the integral of f on [ measures the
signed volume of the region between the graph of [ and the region D and, in the case
that I3 represents the shape of a flat object and the function f: D C D — R represents
its density (or the charge density), the integral of f on I} measures the total mass (or
charge) of the object,

When D © R*, the integral of the constant funetion 1 on D measures the volume of
the region D and, when [J represents the shape of a solid object and f: D C R* -+ R
represents its density (or charge density), the integral of f on D) measures the fotal
mass (or charge) of the object.

7.4 Exercise: Let D be the triangle in R? with vertices at (0, —1), (2,1) and (2, 3). Find
[ 2ry dA,

Jo

7.5 Exercise: Find the volume of the region in R* which lies above the paraboloid
z =% 4+ 3° and below the plane z = 2z.

7.6 Exercise: Find the mass of the tetrahedron with vertices at (0,0,0), (2,0,0), (2,2,0)
and (2,2,2) given that the density is given by plx, y, z) = 2oey(3 — 2).

7.7 Definition: Let I/ and V be open sets in R™, let €' = T7 and D = V. An orientation
preserving change of coordinates map from €' to [ is a continuous map g ¢ — D
such that the map g : I/ — V is invertible and €' with det (Dy[u)} =0 for all a € U, and
an orientation reversing change of coordinates map from C' to D is a continuous
map g : ' — D such that the map g : I/ — V is invertible and C' with det (Dy(a)) <0
for all a € [J.

7.8 Example: Three important orientation preserving change of coordinates maps are
the polar coordinates map in R?, which is given hy

() = glr, @) = (r'umsﬂ,_ r'siui?} with det Dg(r.#) = r,
the eylindrical coordinates map in R*, which is given by
(x,y,2) = g(r,8,2) = (reos@, rsing, z) with det Dg(r.6,2) =r,
and the spherical coordinates map in R?, which is given by

(x.y.2) = glr,0,0) = (r sing cost, r sing sinf, r cosa) with det Dg(r, o, ) = 2 sin .

Usually smooth bijective map

7.9 Theorem: (Change of Variables) When D = o, b CR, andg: CCR =+ DC R
is a change of variables map from C to D) given by x = g(u) with inverse u = h{z), and
[ DT R — R is continuons, we have

b hib)
I[ﬂf(w)dw = /D fla)de = -/Cf{_q(u}}|dct D_q(u)| du = [ S(g(u))g'(u) du.

w=h(a)

When [: D C R? = R is continuous and g : C € R® — D C R? is a change of variables
map from €' to D given by (z,y) = g(u,v), we have

J[| s dzae= [[ 1atoo))]aet Do)

When [ : D C R* = R is continuous and g : ' C R® — D € R? is a change of variables
map from C' to D given by (z,y, 2) = glu, v, w), we have

f[ Df(r.y.z} da dydz = I[[fﬂf{g(u.v.rﬂ)” det Dglu, v, w)

Proof: We may provide a proof in a later chapter.

dudu.

du dv duw.

7.10 Exercise: Find the area inside the cardioid r =2 + 2cosf.
7.11 Exercise: Find the volume of the region under the graph of z = el

7.12 Exercise: Find the volume of the region which lies inside the sphere 2 +9% 422 = 4
and inside the eylinder % — 2x + y? = 0.

7.13 Exercise: Find the mass of the ball 2% + 3 + 2% < 4 given that the density is given
by ple,y.2) = 1 — b/ + 42 4 22,

7.14 Definition: Let n=2or 3, let o : [a,6 € R — R" be continuous on [a, b] and C*
in (a.b). let € be the curve in R™ which is given parametrically by (w.y) = a(f) or by
(z,y,z) =alt) for a <t < b and let f:C C R" — R be continuous on ¢ = Range(a).
Then we write dL = |rz’(£)| df and we deline the (curve) integral of [ on ' to he
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7.4 Solution1:

Note that

D={(x,y)Josx<2x-1<y<2x—1}
Sof,f= fxz:o f;:;ll 2xy dy dx

2

_ 2 2x-1

= [ ol e
2

= f x(2x — 1)% — x(x — 1)%dx
x=0

2
= f 3x% — 2x2dx
x=0

4 3
16 20
=T3 Ty
Solution 2:
j =2x—| X= Qﬂ
— N
f X=2
l
X :\5"‘\
We have
D=D;UD, W ereD1={(x,y)|—1sy51,y7+1$xsy+1}

+1
D, ={(x.y)|1 <y<3ii<xs 2}

So we have

Jr=lreLs

1 y+1 3 2
= 2xydx dy + f f 2xydx |dy
L=—1 L=y+1 y=1 x=¥%1

"z
1 3
[ Ehmdye [ T gendy
y=-1 2 y=1

13 3 1
=J’ Z(y+1)zydy+j 4y—1(y+1)zydy
y=-1 y=1

7.5 Solution:




T.14 Definition: Let n =2 or 3, let o @ |a, b6 © K — K" be continuous on |a, b and C*
in (a.b). let € be the curve in R™ which is given parametrically by (w.y) = a(f) or by
(z,y,z) =alt) for a <t < b and let f:C C R" — R be continuous on ¢ = Range(a).
Then we write dL = |rz’(£)| df and we deline the (curve) integral of [ on ' to he

['frf,f,=.[Cfd.r,=liaf((){t))|rx-'(:)|f;z_

m

When ' is a union €' = | C of curves ), as above, we define j fdA =% JC‘,, f A,
k=1 o k=1

Let D be the elosure of a bounded open set 7 in R?, let & : D € R? — R* be continuous in
Dand C'in U, let S be the surface in R® which is given parametrically by (x, ., z) = a(s.t),
and let f: 5 C R* = R be continuous on S, Then we write dA4 = |(T_.‘ * cr,| dsdt and we
define the (surface) integral of f on 5 to be

f[nfdAzI[Lfd;—i:/fﬂf{a(s,_t))

- . - T B . B T
where o, = (%[s,i): c‘.l—ﬁ[.-s,.f.)_ d—:{x,[)) and o = (3—:{uf} Huig 1), Q(s,i)) .

[ | dsdi.

s s T s is

When S is a union § = ij S of surfaces 5, as above, we define f fdd = i fs;, fda
k=1 5 k=1

7.15 Note: When ' is a curve in R® with n = 2 or 3, which is given by (x,9) = oft)
or by (x,y,z) = alt) for a < ¢ < b, the integral of the constant function 1 on ' measures
the length (or arelength) of the curve €', and in the case that €' represents the shape
of a physical object and the function f: ¢ € R* — R represents its density (or charge
density), the integral of f on C measures the total mass (or charge) of the object.

When § is a surface in R? which is given by (.9, 2) = a(s,t) for (s.f) € D € R?,
the integral of the constant function 1 on S measures the area (or surface-area) of the
surface S, and in the case that 5 represents the shape of a physical object and the funetion
f 5 — R represents its density (or charge density), the integral of [ on S measures
the total mass (or charge) of the surface.

7.16 Exercise: Find the arclength of the helix a{t) = (¢, cost,sint) for 0 < ¢ < 27.

7.17 Exercise: Find the surface area of the torus given by

(z,y,2) = (8, 0) = ((2 + cos ) cos 8, (2 + cosg) sind |, sin c_.'})
for 0 <@ < 27 and 0 < ¢ < 27,
7.18 Exercise: Find the mass of the hollow sphere 22 + 4* + 22 = 1 when the density
(mass per unit area) is given by plr,y,z) =3 — =
7.19 Exercise: Find the mass of the curve of intersection of the parabolic sheet z = 2
with the paraboloid z = 2 — #* — 2y, when the density (mass per unit length) is given by
plecy.z) = |yl

Note that the given tetrahedron is the set D = {(x,5,2)[0 <x < 2,0<y<x,0<z <y}

M=[2 [x [’y 2xy(3 —z)dz dy dx /
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Points on the curve of intersection satisfies z = x2 + y? = 2x
x2-2x+y?=0
(x-12+y2=1

The intersection
It lies above the circle

The given solid D is the set
D={(xy2)|x-D*+y2 < Lx?+y? <z <2x}
={(x,y,z)|0 <x<2,—V2x—x2<y<V2x—x%x*+y*<z< 2x}

The volume is

2 2x—x2 2x
V=fff1dV=f f f 1dzdydx
D x=0Jy=—V2x—x2 Jz=x2+y2

2 Vax—x?
=f , ; 2(Zx—xz—yz)dydx
x=0Jy=—V2x—x
2 1 2x—x2
= f [(Zx —x¥)y= §y3] dx
=0 YT
2
= f ;(2x—x2)2+§(2x—x2)%dx
x=0

Z 4 3
=J’ 5(2x—x2)2dx
x=0
z 4 3
=J’ D5(1—(x—1)2)2dx
=

Letu=x-1
du =dx

1oy 3
= f 3 (1-u?)?du
u=-1

2 4
E J’Z = (cos® @) cos 0 dO
0=-13

ul

2

8

= f ~(cos* @) df By Symmetry
0=03

s 2
_J’z 8<1+c0520) 48
9=03 2
n

2 (2
==|" (1+2cos20 + cos?260) do

Top view



Note that the given tetrahedron isthe set D ={(x,y,z)|[0 <x<2,0<y<x0<z <y}

So the mass is

2 x y
M= f f J’ 2xy(3 —z)dz dy dx
x=07y=0Y2z=0

2 X
= f [6xyz — xyz?]”__dydx
x=0/y=0 z=0
2 x
= J’ 6xy? — xy®dy dx
x=0'y=0
2 1
= 2xy3 — —xy‘*]
J s
2
1
= 2x* —=xSdy
J 2

2
2 1
_|2.5_ 1 6
_[sx 24"]
x=0

64 64 152

X
dx
y=0

5 24 15

Change of variables D-c( a/b>:((" 1@

N
=) 4

X

Examples:

Note : if u is connected. then either Df(x) > 0 for all x € U or Df (x) < 0 forallx € U.

(because for ¢(x) = det Df (x), ¢: U - R\ {0} is continuous and ¢ () is connected.
It follows that ¢ (1) € (—,0) or ¢(w) < (0, )

parallelogram
Trapezoid

When det Df (x) > 0 for all x € U, we say that f preserves orientation and when det Df (x) < 0 for

all x € U, we say that f reverses orientation.

Examples:

43X MATH 247 ()55 55 7T

Top view

(1.,3,2)
"> (03,2)

(0,0,0) (3\,0,0)

\

X



When the polar coordinates map g: U € R? » V € R? where U = {(r,0)|r > 0,a < 8 < a + 21}
andV = R? = {(r cosa,rsina)|r > 0} is given by (x,y) = g(r,8) = (rcos@,rsin8)

The polar coordinates change of variables map is given by (x,y) = g(r,8) = (r cos 8,7 sin 8)

_(cos@ —rsinf 7
Wehave Dg = (sine rcos @ )

and detDg =rcos? 0 +rsin?0 =r>0
forall (r,0) € U.

So the polar coordinates map is orientation preserving.

The cylindrical coordinates map is given by
(x,y,2) = g(r,0,2) = (rcos 8,rsin6,z)
cosf -—rsinf 0

Dg =|sin6 rcosf® 0 @
0 0 1
SothatdetDg =r
The spherical coordinates map \8
(x, v, z) = g(r, b, 9) = (r cos ¢ cos@,r cos ¢ sin 6,7 sin ¢) &>

72 ﬁ

Exercise: Find Df (r, ¢, 8)

and det Df (7, ¢, 6) and simplify. Y
singpcos@ rcos¢pcosf —rsingsinf
Dg = | singsinf rcos¢psin® rsingcosf z=rc95¢ .
cos ¢ —rsin¢ 0 y =rsin¢sinf

x =rsin¢gcosf

detDg
= cos ¢ (r? sin ¢ cos ¢ cos? 8 + r? sin ¢ cos ¢ sin? 8) + 1 sin ¢ (r sin? ¢ cos? 8 + r sin? ¢ sin? §)
= cos ¢ (r?sin¢ cos ) + rsin ¢ (rsin? ¢)

=r?sin¢

Thm (Change of coordinates)
When U,V € R" are open, C = U,D =V and g: C - D is a change of coordinates map and f: D S
R™ - R is continuous, we have

fo= L(fog)ldethl

ForU,VER? f:D=VCR®->R
Writing (x,y,2) = g(u, v, w)
we have

ff f(x,y,z)dxdy dz = ff f(g(u, v, w))|deth(u, v, W)| du dv dw
D c

ForU = (c,d),C =U =[c,d] € R
V=(ab),D=V=[ablSR
fi:D=[ab] >R
x=gmandu=u(x) =g (x)

We have ’( ’\'
ff(x) dx = ff(g(u))ldewg(uﬂdu ¢ c
D c
Thati
atis a . Q b

b d u(b)
[ rerer= [ Aoy @lan= [ rlot)gwa

Why take off the absolute value sign?
(when g'(w) > 0 for all u, u(a) = c and u(b) = d)

Eg. Example 7.10
Find the areaygie the cardin‘id r=2+2cos6
sl

(The fact that r = 0 when @ = & implies in the image curve as 8 approaches , the corresponding
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point in the (x, y) plane approaches the origin r = 0 in the direction of the ray 6 = m.

2m f2+Z cos @
0=0

Theareais A = [J, 1dx dy = [[.1|detDg(r,0)|dr do = [[,rdrdo =

2 1 2+2cos 6 2
fgfo [;rz]r:o do = eroz +4cos 6 + 2cos? 6 df

r=0

=4m+ 0+ 2m
=6m

Exercise 7.12

Find the volume of the region inside the sphere x? + y2 + z2 = 4 and inside the cylinder x? — 2x +
2 _
y =0

D={(xyz)x*+y*+z> <4,(x-1?+y?> <1}.

Solution:

x2=2x+y?=0

Solution 1:
olution r2cos?0 —2rcos O +r?sin?0 =0
2 IER? Jiaiy?
V=f1=4.j J xxf ¥ yldzdydx r = 0 (not needed) or r = 2 cos 6
D x=07y=0 z=0
Solution 2:
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Use cylindrical coordinates

V= ﬂ’flldeth(r,H,z)l dr df dz
c

V=ﬂ]-rdrd0dz
C

% 2cosf (Va-r2
-4 f J' f rdzdr do
A=0Jr=0 z=0
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Find the mass of the ball x? + y? + z2 < 4 where the density is given by

p(x,y,2)=1 —%sz +y2+22
Solution:

ForD = {(x, Y, z)|x2 +y2+2% < 4} and g, the spherical coordinates map, (x, v, z) = g(r, b, 9) =
(rsing cos8,rsinpsing,r cos )

We have D = g(C) where
C={(r¢.0)r<20<¢<m0<6<2m}

The mass is
1 .
M=J’ff (1—5,/x2+yz+zz)dxdydz
b
1
=m (1—Er>|deth(r,¢,9)|drd¢d9
=f f f (1——r>rzsin¢d0d¢dr
r=0J¢=0Jo=0 2

2 w
=1IJ J. (2r2 = r®)singp dgp dr

r=0/¢=0

2
= an 2r? —r3dr
r=0

eg. Find the volume of the region under the graph of z = e-(x*+y?)
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We are finding the volume of D = {(x,y, z)|—oo <x<0-0<y<mn0<z< g-(x2+y2)}

For the polar coordinates map g given
(x, y) =g(r,0) = (rcosf,rsinf)
We have D = g(C)
Where C = {(r,9,2)|0 <r0<6<2m0<z< e"z}
The volume is

ﬂ'fldxdydpfﬂlr dr do dz
D C
First one

~(x2+?)

J- f f 1dzdydx
x=—00 Jy=—o Jz=0
On the other hand,
ﬂf‘r dr db dz
c

o rom e
= f J’ J- r dzdf dr
r=0 £=0 z=0

= an re " dr
=0

1 _.]" 1
=2n[——e"] :2n(0+—>:n
P 2

It follows that

w 2
4 (f et dt> =r
0

N

J:Oe'tz dt = \/—ﬁv

©

Ko Xv Q/TC

u-9Vv _/,_7

={3u W 3 9.
A = l@wﬁuo)( (M\/ﬁ/)

= ohudv | 5.}y
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ch Lgiﬁ
a(®) = (x(0,y(®, (2()))

p(x,y) = linear density at (x, y)

2 2
—— _ |(d d I
dL = Jdx? +dy? = (d—:) + (%) dt ~ X' (O +y' (% dt = |a’ (D)lde

b
1= wola

t=a
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Thm (The Inverse Function Theorem)

let f:U S R" > R"andleta € U
Suppose that f is ¢ and Df (a) is invertible
The f is locally invertible and its (local) inverse is C*

Ifg = £, then g(f()) = x
Dg(f))Df(x) =1
Dg(f(x)) = Df(x)™*

eg.Let f(x,y) = (x + y,xy)
Find the image, under f, of the rectangle with vertices (1, —1), (3,—1), (3,5), (1,5)

Solution:

f@,-1)=(0,-1)
fB-1)=(2-3)
f(3,5) = (8,15)
f(1,5) = (6,5)

Locally invertible most of the time, but not anytime.

he image is merely a bondary
We have

r=(; 3)

detDf =x—y

detDf =0 =y=x

ft,6) = (2¢,t%)

1 1
—(2,2)=2,2
y—(zx) e
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Corollary (Parametric function Theorem)

Corollary (Implicit Function Theorem)
Let f: U € R™* - RK with p € U with f(p) = c.

Suppose f is €' in U and Df (p) has rank k.
Then,

Suppose f is € in U and Df (p) has rank k. Then the level set f 1(c) is locally equal to the graph of a ¢! function.
Df isak x (n + k) matrix. Since Df (p) has rank k. It follows that some k x k submatrix of Df(p) is invertible.
Reorder the variables in R™*¥ so that the last k columns are independent.

Write x = (xl, ...,xn),y = (yl, ...,yk) and z = f(x,y)
0z

0z
Then Df = (a 3
0z, 0zq
9z /63(1 T 9xg
where — =
ox \ Az
0xp.

and Z—; (p) is invertible.

Define F: U € R™*k — Rk

by F(x,y) = (w,z) = (X,f (x, }'))

I 0
Then DF = ( 9z 0z
ox dy

so DF(p) is invertible.
By the inverse function theorem, F is locally invertible.

Let G be the inverse map, and write
(%y) = 6w,2) = (w,gWw,2)
Then verify that the level set f ~*(c) = {(x,¥)|f(x,y) = C} is the same of the graph of the function y = h(x), where h(x) = g(x,c).

eg. Sketch x? — 2xy + 4y? = 12
Solution:

x?—2xy+4(y*-3)=0

2y + /4y2 - 16(y2—3)

SX=—

2
x=y+,12-3y?

Solution:
x? = 2xy + 4y?

=12
1 =1\ (x\ _
=en(l )()=12
. . _(1 -1
diagonalize A = (_1 4 )

A is positive definite

fa)=x-DEx-49H-1
=x2—-5x+3
(s£vT3)

2

Solution:

Let f(x,y) = x? — 2xy + 4y?
(we are sketching £ ~1(12))
Df = (2x — 2y, —2x + 8y)

For (x,y) € f71(12)

a
—f=0$x=y
=3x2=12

x =42

(xy) =(22),(-2,-2)
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a
a—};=0:x=4y:16y2—8y2+4y2=12

12y? =12
y=1=1
= (xy) =41, (-4-1)

Inverse function theorem

Differential geometry
Lagrange Multipliers

To define the n-volume of a bounded set A € R"

Choose a rectangular box which contains A.

Say R = [ay, b1] X [az, bzl X -+ X [ay, by]

Partition each interval [aj, bj] to geta partition P of R into subrectangles R;, ;, i,
We define upper and lower volume estimates

U=[Rl

keT
L= Y[Rl

kes
where

where § = {k = (ky, ..., kn)|Rx S A} or R, S A°

T={k € (ky, ... kn)|[RkNA=@}orRLNA% 0

We define the outer and inner volumes of 4 in R to be
Vol(4,R) = inf{U(R, P)(A)all partition P of R}
Vol\underbar (4,R) = Sup{L(R, P) (A)|all partition P ofR}

Verify that the two Vols do not depend on R.

Write C* = Vol\bar(4, R) for any rectangle R with A € R.
and C.(A4) = Vol\underbar(4, R) for any R

C*(A) is called the outer Jordan content.
C.(A) is the inner Jordan content of A

We say A has a well-defined area or well-defined Jordan content
when C*(4) = C.(4)

Why not just upper limit?
Break some properties.

Volumes/Areas not properly added up

Fact
If A and B are bounded and have well-defined volume, then C*(4 U B) = C*(4) + C*(B)

Fact
Abounded set A € R™ has a well-defined Jordan content & C*(dA) = 0

When 4 C R, arectangle, C*(4) + C.(R\ 4) = |R|

R, CAS R NA =0
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Term Test 4 Preparation

20195E7827H 4:44

NOTE: The MATH 247 Term Test 4 will be held on
Monday July 29, from 12:30-1:20 in MC 4063.

It will cover Chapter 6 and Sections 7.1-7.13, and Assignment 6.
You will be asked to prove 1 of the following 3 theorems.
Lemma 6.1 (lterated Limits)

Theorem 6.8 (Taylor's Theorem)

Theorem 6.17 (The Second Derivative Test)

K B <http://www.math.uwaterloo.ca/~snew/math247-2019-S/>
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